<br><br>
<div><span class="gmail_quote">On 12/1/05, <b class="gmail_sendername">"Hal Finney"</b> <<a href="mailto:hal@finney.org">hal@finney.org</a>> wrote:</span>
<blockquote class="gmail_quote" style="PADDING-LEFT: 1ex; MARGIN: 0px 0px 0px 0.8ex; BORDER-LEFT: #ccc 1px solid">One thing that strikes me about the qualia debate and the philosophical<br>literature on the topic is that it is so little informed by computer
<br>science.  No doubt this is largely because the literature is old<br>and computers are new, but at this point it would seem appropriate to<br>consider computer models of systems that might be said to possess qualia.<br>
I will work out one example here.<br><br>Let's suppose we are going to make a simple autonomous robot.  It needs<br>to be able to navigate through its environment and satisfy its needs<br>for food and shelter.  It has sensors which give it information on the
<br>external world, and a goal-driven architecture to give structure to<br>its actions.  We will assume that the robot's world is quite simple and<br>doesn't have any other animals or robots in it, other than perhaps some
<br>very low-level animals.<br><br>One of the things the robot needs to do is to make plans and consider<br>alternative actions.  For example, it has to decide which of several<br>paths to take to get to different grazing grounds.
<br><br>In order to equip the robot to solve this problem, we will design it<br>so that it has a model of the world around it.  This model is based<br>on its sensory inputs and its memory, so the model includes objects<br>
that are not currently being sensed.  One of the things the robot<br>can do with this model is to explore hypothetical worlds and actions.<br>The model is not locked into conformance with what is being observed,<br>but it can be modified (or perhaps copies of the model would be modified)
<br>to explore the outcome of various possible actions.  Such explorations<br>will be key to evaluating different possible plans of actions in order<br>to decide which will best satisfy the robot's goals.<br><br>This ability to create hypothetical models in order to explore alternative
<br>plans requires a mechanism to simulate the outcome of actions the robot<br>may take.  If the robot imagines dropping a rock, it must fall to the<br>ground.  So the robot needs a physics model that will be accurate enough
<br>to allow it to make useful predictions about the outcomes of its actions.<br><br>This physics model doesn't imply Newton's laws, it can be a much simpler<br>model, what is sometimes called "folk physics".  It has rules like: rocks
<br>are hard, leaves are soft, water will drown you.  It knows about gravity<br>and the strength of materials, and that plants grow slowly over time.<br>It mostly covers inanimate objects, which largely stay where they<br>
are put, but may have some simple rules for animals, which move about<br>unpredictably.<br><br>Using this physics model and its internal representation of the<br>environment, the robot can explore various alternative paths and decide
<br>which is best.  Let us suppose that it is choosing between two paths<br>to grazing grounds, but it knows that one of them has been blocked by<br>a fallen tree.  It can consider taking that path, and eventually coming<br>
to the fallen tree.  Then it needs to consider whether it can get over,<br>or around, or past the tree.<br><br>Note that for this planning process to work, another ingredient is<br>needed besides the physics model.  The model of the environment must
<br>include more than the world around the robot.  It must include the robot<br>itself.  He must be able to model his own motions and actions through<br>the environment.  He has to model himself arriving at the fallen tree
<br>and then consider what he will do.<br><br>Unlike everything else in the environment, the model of the robot is<br>not governed by the physics model.  As he extrapolates future events,<br>he uses the physics model for everything except himself.  He is not
<br>represented by the physics model, because he is far too complex.  Instead,<br>we must design the robot to use a computational model for his own actions.<br>His extrapolations of possible worlds use a physics model for everything
<br>else, and a computational model for himself.<br><br>It's important that the computational model be faithful to the robot's<br>actual capabilities.  When he imagines himself coming to that tree, he<br>needs to be able to bring his full intelligence to bear in solving the
<br>problem of getting past the tree.  Otherwise he might refuse to attempt<br>a path which had a problem that he could actually have solved easily.<br>So his computational model is not a simplified model of his mind.<br>
Rather, we must architect the robot so that his full intelligence is<br>applied within the computational model.<br><br>That is not a particularly difficult task from the software engineering<br>perspective.  We just have to modularize the robot's intelligence,
<br>problem-solving and modelling capabilities so that they can be brought<br>to bear in their full force against simulated worlds as well as real ones.<br>It is not a hard problem.<br><br>I am actually glossing over the true hard problem in designing a robot
<br>that could work like this.  As I have described it, this robot is capable<br>of evaluating plans and choosing the one which works best.  What I have<br>left off is how he creates plans and chooses the ones that make sense
<br>to fully model and evaluate in this way.  This is an unsolved problem<br>in computer science.  It is why our robots are so bad.<br><br>Ironically, the process I have described, of modelling and evaluation,<br>is only present in the highest animals, yet is apparently much simpler
<br>to implement in software than the part we can't do yet.  Only humans,<br>and perhaps a few animals to a limited extent, plan ahead in the manner<br>I have described for the robot.  There have been many AI projects built
<br>on planning in this manner, and they generally have failed.  Animals<br>don't plan but they do OK because the unsolved problem, of generating<br>"plausible" courses of action, is good enough for them.<br><br>
This gap in our robot's functionality, while of great practical<br>importance, is not philosophically important for the point I am going<br>to make.  I will focus on its high-level functionality of modelling the<br>world and its own actions in that world.
<br><br>To jump ahead a bit, the fact that two different kinds of models - a<br>physical model for the world, and a computational model for the robot -<br>are necessary to create models of the robot's actions in the world is
<br>where I will find the origins of qualia.  Just as we face a paradox<br>between a physical world which seems purely mechanistic, and a mental<br>world which is lively and aware, the robot also has two inconsistent<br>models of the world, which he will be unable to reconcile.  And I would
<br>also argue that this use of dual models is inherent to robot design.<br>If and when we create successful robots with this ability to plan,<br>I expect that they will use exactly this kind of dual architecture for<br>their modelling.  But I am getting ahead of the story.
</blockquote>
<div> </div>
<div> </div>
<div>See the proposal in my last post.  I suggested not two, but *three* different kinds of models.  My 'Physical System' corresponded to your 'Physical Model'.  My 'Volitional System' is what you refer to as a 'Computational Model' (which as Jef rightly pointed out is a misnomer - the physical model is commputational as well).
</div>
<div> </div>
<div>Did you grok my trick for reconciling the two inconsistent models?  I also proposed a *third* kind of model ('The Mathematical System') which has the job of reconciling the other two.  And Qualia/Mathematics emerges from this third model.
</div>
<div>  </div><br>
<blockquote class="gmail_quote" style="PADDING-LEFT: 1ex; MARGIN: 0px 0px 0px 0.8ex; BORDER-LEFT: #ccc 1px solid">Let us now imagine that the robot faces a more challenging environment.<br>He is no longer the only intelligent actor.  He lives in a tribe of
<br>other robots and must interact with them.  We may also fill his world<br>with animals of lesser intelligence.<br><br>Now, to design a robot that can work in this world, we will need to<br>improve it over the previous version.  In particular, the physics model
<br>is going to be completely ineffective in predicting the actions of other<br>robots in the world.  Their behaviors will be as complex and unpredictable<br>as the robot's own.  They can't be modelled like rocks or plants.
<br><br>Instead, what will be necessary is for the robot to be able to apply his<br>own computational model to other agents besides himself.  Previously, his<br>model of the world was entirely physical except for a sort of "bubble of
<br>non-physicality" which was himself as he moved through the model.  Now he<br>must extend his world to have multiple such bubbles, as each other robot<br>entity will be similarly modelled by a non-physics model, instead using a
<br>computational one.<br><br>This is going to be challenging for us, the architects, because<br>modelling other robots computationally is harder than modelling the<br>robots' own future actions.  Other robots are much more different than
<br>the future robot is.  They may have different goals, different physical<br>characteristics, and be in very different situations.  So the robot's<br>computational model will have to be more flexible in order to make<br>
predictions of other robot's actions.  The problem is made even worse<br>by the fact that he would not know a priori just what changes to make in<br>order to model another robot.  Not only must he vary his model, he has to
<br>figure out just how to vary it in order to produce accurate predictions.<br>The robot will be engaged in a constant process of study and analysis<br>to improve his computational models of other robots in order to predict
<br>their actions better.<br><br>One of the things we will let the robots do is talk.  They can exchange<br>information.  This will be very helpful because it lets them update their<br>world models based on information that comes from other robots, rather
<br>than just their own observations.  It will also be a key way that robots<br>can attempt to control and manipulate their environment, by talking to<br>other robots in the hopes of getting them to behave in a desired way.
<br><br>For example, if this robot tribe has a leader who chooses where they will<br>graze, our robot may hope to influence this leader's choice, because<br>perhaps he has a favorite food and he wants them to graze in the area
<br>where it is abundant.  How can he achieve this goal?  In the usual way,<br>he sets up alternative hypothetical models and considers which ones<br>will work best.  In these models, he considers various things he might<br>
say to the leader that could influence his choice of where to graze.<br>In order to judge which statements would be most effective, he uses<br>his computational model of the leader in order to predict how he will<br>respond to various things the robot might say.  If his model of the
<br>leader is good, he may be successful in finding something to say that<br>will influence the leader and achieve the robot's goal.<br><br>Clearly, improving computational models of other robots is of high<br>importance in such a world.  Likewise, improved physics models will also
<br>be helpful in terms of finding better ways to influence the physical<br>world.  Robots who find improvements in either of these spheres may be<br>motivated to share them with others.  A robot who successfully advances
<br>the tribe's knowledge of the world may well gain influence as "tit for<br>tat" relationships of social reciprocity naturally come into existence.<br><br>Robots would therefore be constantly on the lookout for observations and
<br>improvements which they could share, in order to improve their status<br>and become more influential (and thereby better achieve their goals).<br>Let's suppose, as another example, that a robot discovers that the<br>tribe's leader is afraid of another tribe member.  He finds that such a
<br>computational model does a better job of predicting the leader's actions.<br>He could share this with another tribe member, benefitting that other<br>robot, and thereby gaining more influence over them.<br><br>One of the fundamental features of the robot's world is that he has
<br>these two kinds of models that he uses to predict actions, the physics<br>model and the computational model.  He needs to be able to decide which<br>model to use in various circumstances.  For example, a dead or sleeping
<br>tribe member may be well handled by a physics model.<br><br>An interesting case arises for lower animals.  Suppose there are lizards<br>in the robot's world.  He notices that lizards like to lie in the sun,<br>but run away when a robot comes close.  This could be handled by a
<br>physics model which just describes these two behaviors as characteristics<br>of lizards.  But it could also be handled by a computational model.<br>The robot could imagine himself lying in the sun because he likes its
<br>warmth and it feels good.  He could imagine himself running away because<br>he is afraid of the giant-sized robots coming at him.  Either model<br>works to some degree.  Should a lizard be handled as a physical system,
<br>or a computational system?<br><br>The robot may choose to express this dilemma to another robot.<br>The general practice of offering insights and information in order<br>to gain social status will motivate sharing such thoughts.  The robot
<br>may point out that some systems are modelled physically and some, like<br>other robots, are modelled computationally.  When they discuss improved<br>theories about the world, they have to use different kinds of language
<br>to describe their observations and theories in these areas.  But what<br>about lizards, he asks.  It seems that a physics model works OK for<br>them, although it is a little complex.  But they could also be handled<br>
with a computational model, although it would be extremely simplified.<br>Which is best?  Are lizards physical or computational entities?<br><br>I would suggest that this kind of conversation can be realistically mapped<br>
into language of consciousness and qualia.  The robot is saying, it is<br>"like something" to be you or me or some other robot.  There is more<br>than physics involved.  But what about a lizard?  Is it "like something"
<br>to be a lizard?  What is it like to be a lizard?<br><br>Given that robots perceive this inconsistency and paradox between their<br>internal computational life and the external physical world, that they<br>puzzle over where to draw the line between computational and physical
<br>entities, I see a close mapping to our own puzzles.  We too ponder over<br>the seeming inconsistency between a physical world and our mental lives.<br>We too wonder how to draw the line, as when Nagel asks, what is it like
<br>to be a bat.<br><br>In short I am saying that these robots are as conscious as we are, and<br>have qualia to the extent that we do.  The fact that they are able and<br>motivated to discuss philosophical paradoxes involving qualia makes the
<br>point very clearly and strongly.<br><br>I may be glossing over some steps in the progress of the robots' mental<br>lives, but the basic paradox is built into the robot right from the<br>beginning, when we were forced to use two different kinds of models
<br>to allow him to do his planning.  Once we gave the robots the power of<br>speech and put them into a social environment, it was natural for them<br>to discover and discuss this inconsistency in their models of the world.
<br>An alien overhearing such a conversation would, it seems to me, be as<br>justified in ascribing consciousness and qualia to robots as it would<br>be in concluding that human beings had the same properties.<br><br>As to when the robot achieved his consciousness, I suspect that it also
<br>goes back to that original model.  Once he had to deal with a world that<br>was part physical and part mental, where he was able to make effective<br>plans and evaluate them, he already had the differentiation in place
<br>that we experience between our mental lives and the physical world.<br><br>Hal<br>_______________________________________________<br>extropy-chat mailing list<br><a href="mailto:extropy-chat@lists.extropy.org">extropy-chat@lists.extropy.org
</a><br><a href="http://lists.extropy.org/mailman/listinfo/extropy-chat">http://lists.extropy.org/mailman/listinfo/extropy-chat</a><br></blockquote></div><br><br clear="all"><br>-- <br>To see a World in a grain of sand, <br>
And Heaven in a wild flower, <br>Hold Infinity in the palm of your hand <br>And Eternity in an hour. <br>-William Blake<br><br>Please visit my web-site:<br><a href="http://www.riemannai.org/">http://www.riemannai.org/</a>
<br>Sci-Fi, Science and Fantasy