On 9/7/06, pjmanney <<a href="mailto:pj@pj-manney.com">pj@pj-manney.com</a>> wrote:<br>> <br>> Crucial piece of info: these nanobots are still OUTSIDE the body at this point.<br>>  And there are a whole lot of them ready to be deployed.  To a whole lot of people. 
<br><br>Oh, that's easy.  Artificial nanorobots are only slightly different from "natural" nanorobots, i.e. bacteria.  So.... the classical defenses -- heat, pressure & radiation will all work.  Deep UV, X-rays and Gamma ray photons all have sufficient energy to break atomic bonds.  IR causes the atoms to vibrate sufficiently that the bonds break.  Light, if tuned to the right frequencies might force electrons out of the atoms and disrupt the atomic structure (diamond itself is transparent -- but "diamondoid" isn't just pure cubic diamond structures -- you have other atoms present to vary the structure -- those atoms may not be transparent to various frequencies -- I don't think this area has been studied to any great degree).
<br><br>Similarly, if you have nanorobots within the body they have to be running off of some power source, commonly glucose if you are using nano-fuel cells (unless they are consuming (oxdizing) body tissue.  So if you cut off either the glucose supply or the oxygen supply they will grind to a halt fairly quickly.  If they are running on an internal Gd-148 (or similar radioactive) power source things are a little trickier.  Then you probably have to block them with physical barriers.  I've never seen calculations regarding the limits to nanorobots using steel, titanium, hafnium carbide, uranium plate, etc. but I suspect they exist.  Nanorobots aren't like electrons -- they can't just tunnel from one side of the plate to the other (at least not in our lifetime) -- they would have to drill holes and that is going to require energy and time.  I'm not sure how drill bits wear (I suspect it is local force breaking the bonds on the atoms at the intersecting surfaces) which would imply that even a diamondoid drill tipped nanorobot is going to have a tough time going through hafnium carbide (or diamond) plate.  As it destroys the drill surfaces it is going to have to slow down and replace them or resynthesize them.  That means that the nanorobots have to be bulkier, carry more spares, use more energy, etc. 
i.e. are "slower" than most "worst case" scenarios would tend to suggest.  By and large its a mass-mass and energy-energy problem -- which ever group has the greatest mass or energy at its disposal is likely to take the field.
<br><br>Robert<br><br><br><br>