<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML><HEAD>
<META http-equiv=Content-Type content="text/html; charset=iso-8859-1">
<META content="MSHTML 6.00.6000.16414" name=GENERATOR>
<STYLE></STYLE>
</HEAD>
<BODY bgColor=#ffffff>
<DIV><FONT face=Arial size=2>Anders wrote:</FONT></DIV>
<DIV><FONT face=Arial size=2></FONT> </DIV>
<DIV>> Now, our big disagreement really seems to be the constructability of 
<DIV>> bilayers. I say they probably can be put together according to 
fairly<BR>> complex specifications by working a LN temperatures and then 
</DIV>
<DIV>> thawing, you say it cannot be done. Maybe we should start a 
separate</DIV>
<DIV>> thread to actually hash it out freshly, stating assumptions and 
all that?<BR><BR>[ this paper seems relevant, but I haven't found the full text 
yet:<BR><A 
href="">http://journals.cambridge.org/action/displayAbstract;jsessionid=2DB1538444172C5407EB5A708E22DA6E.tomcat1?fromPage=online&aid=365124</A><BR>]</DIV>
<DIV><FONT face=Arial size=2></FONT> </DIV>
<DIV><FONT face=Arial size=2>Okay. Sure. The relevant bilayers for cells, that 
are functional as cells, are</FONT></DIV>
<DIV><FONT face=Arial size=2>not flat </FONT><FONT face=Arial size=2>ones like 
</FONT><FONT face=Arial size=2>sheets of fat floating on water, they are volume 
containing </FONT></DIV>
<DIV><FONT face=Arial size=2>3D ones like </FONT><FONT face=Arial 
size=2>balloons of different shapes and sizes </FONT><FONT face=Arial 
size=2>that separate what is </FONT></DIV>
<DIV><FONT face=Arial size=2>inside </FONT><FONT face=Arial size=2>from 
what is outside them. They can be as thin as 6 nm. In neurons</FONT></DIV>
<DIV><FONT face=Arial><FONT size=2>the bilayers, like a skin, have 
an arboreal shape of the interleaving neurons</FONT></FONT></DIV>
<DIV><FONT face=Arial><FONT size=2>themselves </FONT></FONT><FONT 
face=Arial><FONT size=2>and may </FONT></FONT><FONT face=Arial><FONT 
size=2><FONT>extend in individual neurons extend unbroken from 
the</FONT></FONT></FONT></DIV>
<DIV><FONT face=Arial><FONT size=2><FONT>axon to </FONT></FONT></FONT><FONT 
face=Arial><FONT size=2><FONT>dendrite tips which may be 
</FONT></FONT></FONT><FONT face=Arial><FONT size=2><FONT>separated 
</FONT></FONT></FONT><FONT face=Arial size=2>by distances as much as 
a</FONT></DIV>
<DIV><FONT face=Arial size=2>metre. </FONT> </DIV>
<DIV><FONT face=Arial size=2></FONT> </DIV>
<DIV><FONT face=Arial size=2>These bilayers are found for instance in the plasma 
membrane that is </FONT></DIV>
<DIV><FONT face=Arial size=2>around the cell </FONT><FONT face=Arial 
size=2>overall </FONT><FONT face=Arial size=2>around mitochondria 
</FONT><FONT face=Arial size=2>where the </FONT><FONT face=Arial size=2>bilayers 
</FONT><FONT face=Arial size=2>are crucial</FONT></DIV>
<DIV><FONT face=Arial size=2>to the functioning of the hydrogen ion pumping 
</FONT><FONT face=Arial size=2>of the mitochondria</FONT><FONT face=Arial 
size=2>, </FONT><FONT face=Arial size=2>in </FONT><FONT face=Arial 
size=2>the</FONT></DIV>
<DIV><FONT face=Arial size=2>ER </FONT><FONT face=Arial size=2>and 
the </FONT><FONT face=Arial size=2>nucleus, in the golgi, and 
in </FONT><FONT face=Arial size=2>lysosomes </FONT><FONT face=Arial 
size=2>etc and, </FONT><FONT face=Arial size=2>rupturing </FONT></DIV>
<DIV><FONT face=Arial size=2>these </FONT><FONT face=Arial size=2>bilayers is 
often going to be fatal to the </FONT><FONT face=Arial size=2>cell. 
Vesicles also have</FONT></DIV>
<DIV><FONT face=Arial size=2>bilayers. </FONT></DIV>
<DIV><FONT face=Arial size=2></FONT> </DIV>
<DIV><FONT face=Arial size=2>The human brain has a volume on average of 1450 
millilitres or cubic</FONT></DIV>
<DIV><FONT face=Arial size=2>centimetres. (figure 1 associated email attachment) 
This volume is </FONT></DIV>
<DIV><FONT face=Arial size=2>approximately equivalent to that </FONT><FONT 
face=Arial size=2>of a cube </FONT><FONT face=Arial size=2>with sides of 
11.318512 cm</FONT></DIV>
<DIV><FONT face=Arial size=2>or  113,185,120 nanometres.(fig 
2) </FONT></DIV>
<DIV><FONT face=Arial size=2></FONT> </DIV>
<DIV><FONT face=Arial size=2>Assume 50 nanometre cubic volumes are sufficient 
for requisite level</FONT></DIV>
<DIV><FONT face=Arial size=2>of molecular detail. (fig 4)  </FONT></DIV>
<DIV><FONT face=Arial size=2></FONT> </DIV>
<DIV><FONT face=Arial size=2>This means that the human brain could 
be conceptualised </FONT><FONT face=Arial size=2>as </FONT></DIV>
<DIV><FONT face=Arial size=2>comprising </FONT><FONT face=Arial size=2>about 
1.45 10^24 such cubic volumes. </FONT><FONT face=Arial size=2>1.45 trillion 
trillion</FONT></DIV>
<DIV><FONT face=Arial size=2>cubes.</FONT></DIV>
<DIV><FONT face=Arial size=2></FONT> </DIV>
<DIV><FONT face=Arial size=2>Lipid bilayers will be disperse throughout those 
cubes not necessarily</FONT></DIV>
<DIV><FONT face=Arial size=2>evenly and of course without particular structures 
like filopodia falling</FONT></DIV>
<DIV><FONT face=Arial size=2>neatly into those 50 nm volumes.</FONT></DIV>
<DIV><FONT face=Arial size=2></FONT> </DIV>
<DIV><FONT face=Arial size=2>If the 50 nm cubes can be put together using a 
manufacturing process</FONT></DIV>
<DIV><FONT face=Arial size=2>and attached to each other such that the lipid 
bilayers fuse and their</FONT></DIV>
<DIV><FONT face=Arial size=2>contents are not spilled then you'd have a 
successful reconstruction</FONT></DIV>
<DIV><FONT face=Arial size=2>of the biological brain. </FONT></DIV>
<DIV><FONT face=Arial size=2></FONT> </DIV>
<DIV><FONT face=Arial size=2>But I say, it can't be done. The 
physics and chemistry of the </FONT><FONT face=Arial 
size=2>biomolecules</FONT></DIV>
<DIV><FONT face=Arial size=2>won't allow it to be done as a manufacturing 
</FONT><FONT face=Arial size=2>process. </FONT></DIV>
<DIV><FONT face=Arial size=2></FONT> </DIV>
<DIV><FONT face=Arial size=2>Anders you say it can? Then let's see 
how. </FONT></DIV>
<DIV><FONT face=Arial size=2></FONT> </DIV>
<DIV><FONT face=Arial size=2></FONT> </DIV>
<DIV><FONT face=Arial size=2>- Brett Paatsch</FONT></DIV>
<DIV><FONT face=Arial size=2></FONT> </DIV>
<DIV><FONT face=Arial size=2>PS: Apologies for the very rough sketches. 
</FONT></DIV>
<DIV><FONT face=Arial size=2></FONT> </DIV>
<DIV><FONT face=Arial size=2>For simplicity I'm assuming a filopodia 
containing a single actin "strut"</FONT></DIV>
<DIV><FONT face=Arial size=2>is the finest </FONT><FONT face=Arial 
size=2>scale of bilayer-enclosed </FONT><FONT face=Arial size=2>structure 
than formed by cells</FONT></DIV>
<DIV><FONT face=Arial size=2>in the brain.  I'm assuming that you need 
to be able to restore to brain</FONT></DIV>
<DIV><FONT face=Arial size=2>to the </FONT><FONT face=Arial size=2>filopodial 
scale.  </FONT></DIV>
<DIV><FONT face=Arial size=2></FONT> </DIV>
<DIV><FONT face=Arial size=2>Late last year I asked a Melbourne University 
neuroscientist and </FONT></DIV>
<DIV><FONT face=Arial size=2>lecturer in the school of anatomy and cell biology 
</FONT><FONT face=Arial size=2>what </FONT><FONT face=Arial size=2>level of 
</FONT></DIV>
<DIV><FONT face=Arial size=2>detail would be needed to accurately pick up the 
structural</FONT></DIV>
<DIV><FONT face=Arial size=2>information of the brain - he said 50 nm. 
</FONT></DIV>
<DIV><FONT face=Arial size=2></FONT> </DIV>
<DIV><FONT face=Arial size=2>I think 50 nm seems reasonable based on two lipid 
bilayers of</FONT></DIV>
<DIV><FONT face=Arial size=2>6 nm each, 1 actin strut of 5-9 nm, some 
space around the</FONT></DIV>
<DIV><FONT face=Arial size=2>strut for assembling it say 12nm 
and build into the lipid </FONT></DIV>
<DIV><FONT face=Arial size=2>bilayer are molecules such as integrins which 
bind cadherins</FONT></DIV>
<DIV><FONT face=Arial size=2>and the extracellular matix, as well as other 
proteins and</FONT></DIV>
<DIV><FONT face=Arial size=2>sugars getting to around 50 nm in cross 
section.  </FONT></DIV>
<DIV><FONT face=Arial size=2></FONT> </DIV>
<DIV><FONT face=Arial size=2>Sizes of structures taken from Alberts Molecular 
Biology</FONT></DIV>
<DIV><FONT face=Arial size=2>of the Cell 4th Edition 2002 available at the NCBI 
bookshelf. </FONT></DIV>
<DIV><FONT face=Arial size=2></FONT> </DIV>
<DIV> </DIV>
<DIV><FONT face=Arial size=2></FONT> </DIV>
<DIV><FONT face=Arial size=2></FONT> </DIV>
<DIV><FONT face=Arial size=2></FONT> </DIV>
<DIV><FONT face=Arial size=2></FONT> </DIV>
<DIV><FONT face=Arial size=2></FONT> </DIV></DIV></BODY></HTML>