<br><br><div><span class="gmail_quote">On 04/06/07, <b class="gmail_sendername">John K Clark</b> <<a href="mailto:jonkc@att.net">jonkc@att.net</a>> wrote:<br><br></span><blockquote class="gmail_quote" style="border-left: 1px solid rgb(204, 204, 204); margin: 0pt 0pt 0pt 0.8ex; padding-left: 1ex;">
The problem is that there are an infinite number of subsets that are just as<br>large as the entire set, in fact, that is the very mathematical definition<br>of infinity.<br></blockquote></div><br>You're not obliged to constrain probability theory by that definition. The cardinality of the set of odd numbers is the same as the cardinality of the set of multiples of 10, but that doesn't mean that a randomly chosen integer is just as likely to be odd as to be a multiple of 10; it is obviously 5 times as likely to be odd. Perhaps you can get around this by saying a randomly chosen integer must be chosen from a finite set, otherwise it is infinite, and infinity is not defined as either odd or a multiple of 10 or neither. However, if there is an actual infinity of consecutively numbered things, and you're in the middle of it, you can actually pick out a local finite subset, and even though you might not know "where" it is in relation to "zero" (if that is meaningful at all), you can be blindly sure that 5 times as many of the things will have a number ending in an odd integer as in a zero.
<br><br clear="all"><br>-- <br>Stathis Papaioannou