<div dir="ltr">DARPA has announced a set of Mathematical Challenges "with the goal of dramatically
revolutionizing mathematics and thereby strengthening the scientific
and technological capabilities of DoD,"
<br><br><<a href="https://www.fbo.gov/download/9bc/9bce380aafb19f9ad3bda188bfc1ab20/DARPA-BAA-08-65.doc">https://www.fbo.gov/download/9bc/9bce380aafb19f9ad3bda188bfc1ab20/DARPA-BAA-08-65.doc</a>><br><br>It's interesting how closely so many of these dovetail with topics of interest to the Extropy list.<br>
<br>- Jef<br><br>
<meta http-equiv="CONTENT-TYPE" content="text/html; charset=utf-8">
<title></title>
<meta name="GENERATOR" content="OpenOffice.org 2.4 (Linux)">
<style type="text/css">
<!--
@page { size: 8.5in 11in; margin: 0.79in }
P { margin-bottom: 0.08in }
-->
</style>
<p style="margin-bottom: 0in;">Mathematical Challenge One: <b>The
Mathematics of the Brain </b>
</p>
<ul><li><p style="margin-bottom: 0in;">Develop a mathematical theory to
build a functional model of the brain that is mathematically
consistent and predictive rather than merely biologically inspired.</p>
</li></ul>
<p style="margin-left: 0.5in; margin-bottom: 0in;"><br>
</p>
<p style="margin-bottom: 0in;">Mathematical Challenge Two: <b>The
Dynamics of Networks</b></p>
<ul><li><p style="margin-bottom: 0in;">Develop the high-dimensional
mathematics needed to accurately model<b> </b>and predict behavior
in large-scale distributed networks that evolve over<b> </b>time
occurring in communication, biology and the social sciences.</p>
</li></ul>
<p style="margin-bottom: 0in;"><br>
</p>
<p style="margin-bottom: 0in;">Mathematical Challenge Three: <b>Capture
and Harness Stochasticity in Nature</b></p>
<ul><li><p style="margin-bottom: 0in;">Address Mumford's call for new
mathematics for the 21<sup>st</sup> century. Develop methods that
capture persistence in stochastic environments.</p>
</li></ul>
<p style="margin-bottom: 0in;"><br>
</p>
<p style="margin-bottom: 0in;">Mathematical Challenge Four: <b>21st
Century Fluids</b></p>
<ul><li><p style="margin-bottom: 0in;">Classical fluid dynamics and the
Navier-Stokes Equation were extraordinarily successful in obtaining
quantitative understanding of shock waves, turbulence and solitons,
but new methods are needed to tackle complex fluids such as foams,
suspensions, gels and liquid crystals.</p>
</li></ul>
<p style="margin-bottom: 0in;"><br>
</p>
<p style="margin-bottom: 0in;">Mathematical Challenge Five:
<b>Biological Quantum Field Theory</b></p>
<ul><li><p style="margin-bottom: 0in;">Quantum and statistical methods
have had great success modeling virus evolution. Can such techniques
be used to model more complex systems such as bacteria? Can these
techniques be used to control pathogen evolution?</p>
</li></ul>
<p style="margin-bottom: 0in;"></p><p style="margin-bottom: 0in;"><br>Mathematical Challenge Six:
<b>Computational Duality</b></p>
<ul><li><p style="margin-bottom: 0in;">Duality in mathematics has been a
profound tool for theoretical understanding. Can it be extended to
develop principled computational techniques where duality and
geometry are the basis for novel algorithms?</p>
</li></ul>
<p style="margin-bottom: 0in;"><br>
</p>
<p style="margin-bottom: 0in;">Mathematical Challenge Seven: <b>Occam's
Razor in Many Dimensions</b></p>
<ul><li><p style="margin-bottom: 0in;">As data collection increases can
we "do more with less" by finding lower bounds for sensing
complexity in systems? This is related to questions about entropy
maximization algorithms.</p>
</li></ul>
<p style="margin-bottom: 0in;"><br>
</p>
<p style="margin-bottom: 0in;">Mathematical Challenge Eight: <b>Beyond
Convex Optimization</b></p>
<ul><li><p style="margin-bottom: 0in;">Can linear algebra be replaced by
algebraic geometry in a systematic way?</p>
</li></ul>
<p style="margin-bottom: 0in;"><br>
</p>
<p style="margin-bottom: 0in;">Mathematical Challenge Nine: <b>What
are the Physical Consequences of Perelman's Proof of Thurston's
Geometrization Theorem?</b></p>
<ul><li><p style="margin-bottom: 0in;">Can profound theoretical advances
in understanding three dimensions be applied to construct and
manipulate structures across scales to fabricate novel materials?</p>
</li></ul>
<p style="margin-bottom: 0in;"><br>
</p>
<p style="margin-bottom: 0in;">Mathematical Challenge Ten:
<b>Algorithmic Origami and Biology</b></p>
<ul><li><p style="margin-bottom: 0in;">Build a stronger mathematical
theory for isometric and rigid embedding that can give insight into
protein folding.</p>
</li></ul>
<p style="margin-bottom: 0in;"><br>
</p>
<p style="margin-bottom: 0in;">Mathematical Challenge Eleven: <b>Optimal
Nanostructures</b></p>
<ul><li><p style="margin-bottom: 0in;">Develop new mathematics for
constructing optimal globally symmetric structures by following
simple local rules via the process of nanoscale self-assembly.</p>
</li></ul>
<p style="margin-bottom: 0in;"><br>
</p>
<p style="margin-bottom: 0in;">Mathematical Challenge Twelve: <b>The
Mathematics of Quantum Computing, Algorithms, and Entanglement</b></p>
<ul><li><p style="margin-bottom: 0in;">In the last century we learned how
quantum phenomena shape our world. In the coming century we need to
develop the mathematics required to control the quantum world.</p>
</li></ul>
<p style="margin-bottom: 0in;"><br>
</p>
<p style="margin-bottom: 0in;">Mathematical Challenge Thirteen:
<b>Creating a Game Theory that Scales</b></p>
<ul><li><p style="margin-bottom: 0in;">What new scalable mathematics is
needed to replace the traditional Partial Differential Equations
(PDE) approach to differential games?</p>
</li></ul>
<p style="margin-bottom: 0in;"><br>
</p>
<p style="margin-bottom: 0in;">Mathematical Challenge Fourteen: <b>An
Information Theory for Virus Evolution</b></p>
<ul><li><p style="margin-bottom: 0in;">Can Shannon's theory shed light
on this fundamental area of biology?</p>
</li></ul>
<p style="margin-bottom: 0in;"><br>
</p>
<p style="margin-bottom: 0in;">Mathematical Challenge Fifteen: <b>The
Geometry of Genome Space</b></p>
<ul><li><p style="margin-bottom: 0in;">What notion of distance is needed
to incorporate biological utility?</p>
</li></ul>
<p style="margin-bottom: 0in;"><br>
</p>
<p style="margin-bottom: 0in;"></p><p style="margin-bottom: 0in;">Mathematical Challenge Sixteen: <b>What
are the Symmetries and Action Principles for Biology?</b></p>
<ul><li><p style="margin-bottom: 0in;">Extend our understanding of
symmetries and action principles in biology along the lines of
classical thermodynamics, to include important biological concepts
such as robustness, modularity, evolvability and variability.</p>
</li></ul>
<p style="margin-bottom: 0in;"><br>
</p>
<p style="margin-bottom: 0in;">Mathematical Challenge Seventeen:
<b>Geometric Langlands and Quantum Physics</b></p>
<ul><li><p style="margin-bottom: 0in;">How does the Langlands program,
which originated in number theory and representation theory, explain
the fundamental symmetries of physics? And vice versa?</p>
</li></ul>
<p style="margin-bottom: 0in;"><br>
</p>
<p style="margin-bottom: 0in;">Mathematical Challenge Eighteen:
<b>Arithmetic Langlands, Topology, and Geometry</b></p>
<ul><li><p style="margin-bottom: 0in;">What is the role of homotopy
theory in the classical, geometric, and quantum Langlands programs?</p>
</li></ul>
<p style="margin-bottom: 0in;"><br>
</p>
<p style="margin-bottom: 0in;">Mathematical Challenge Nineteen:
<b>Settle the Riemann Hypothesis</b></p>
<ul><li><p style="margin-bottom: 0in;">The Holy Grail of number theory.</p>
</li></ul>
<p style="margin-bottom: 0in;"><br>
</p>
<p style="margin-bottom: 0in;">Mathematical Challenge Twenty:
<b>Computation at Scale</b></p>
<ul><li><p style="margin-bottom: 0in;">How can we develop asymptotics for
a world with massively many degrees of freedom?</p>
</li></ul>
<p style="margin-bottom: 0in;"><br>
</p>
<p style="margin-bottom: 0in;">Mathematical Challenge Twenty-one:
<b>Settle the Hodge Conjecture</b></p>
<ul><li><p style="margin-bottom: 0in;">This conjecture in algebraic
geometry is a metaphor for transforming transcendental computations
into algebraic ones.</p>
</li></ul>
<p style="margin-bottom: 0in;"><br>
</p>
<p style="margin-bottom: 0in;">Mathematical Challenge Twenty-two: <b>
</b><b>Settle the Smooth Poincare Conjecture in Dimension 4</b></p>
<ul><li><p style="margin-bottom: 0in;">What are the implications for
space-time and cosmology? And might the answer unlock the secret of
"dark energy"?</p>
</li></ul>
<p style="margin-bottom: 0in;"><br>
</p>
<p style="margin-bottom: 0in;">Mathematical Challenge Twenty-three:
<b>What are the Fundamental Laws of Biology?</b></p>
<ul><li><p style="margin-bottom: 0in;">This question will remain front
and center for the next 100 years. DARPA places this challenge last
as finding these laws will undoubtedly require the mathematics
developed in answering several of the questions listed above.</p>
</li></ul>
<br></div>