<html xmlns:v="urn:schemas-microsoft-com:vml" xmlns:o="urn:schemas-microsoft-com:office:office" xmlns:w="urn:schemas-microsoft-com:office:word" xmlns:m="http://schemas.microsoft.com/office/2004/12/omml" xmlns="http://www.w3.org/TR/REC-html40"><head><META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=us-ascii"><meta name=Generator content="Microsoft Word 14 (filtered medium)"><style><!--
/* Font Definitions */
@font-face
{font-family:Calibri;
panose-1:2 15 5 2 2 2 4 3 2 4;}
@font-face
{font-family:Tahoma;
panose-1:2 11 6 4 3 5 4 4 2 4;}
/* Style Definitions */
p.MsoNormal, li.MsoNormal, div.MsoNormal
{margin:0in;
margin-bottom:.0001pt;
font-size:12.0pt;
font-family:"Times New Roman","serif";}
a:link, span.MsoHyperlink
{mso-style-priority:99;
color:blue;
text-decoration:underline;}
a:visited, span.MsoHyperlinkFollowed
{mso-style-priority:99;
color:purple;
text-decoration:underline;}
span.hoenzb
{mso-style-name:hoenzb;}
span.EmailStyle18
{mso-style-type:personal-reply;
font-family:"Calibri","sans-serif";
color:#1F497D;}
.MsoChpDefault
{mso-style-type:export-only;
font-family:"Calibri","sans-serif";}
@page WordSection1
{size:8.5in 11.0in;
margin:1.0in 1.0in 1.0in 1.0in;}
div.WordSection1
{page:WordSection1;}
--></style><!--[if gte mso 9]><xml>
<o:shapedefaults v:ext="edit" spidmax="1026" />
</xml><![endif]--><!--[if gte mso 9]><xml>
<o:shapelayout v:ext="edit">
<o:idmap v:ext="edit" data="1" />
</o:shapelayout></xml><![endif]--></head><body lang=EN-US link=blue vlink=purple><div class=WordSection1><p class=MsoNormal><span style='font-size:11.0pt;font-family:"Calibri","sans-serif";color:#1F497D'><o:p> </o:p></span></p><p class=MsoNormal><span style='font-size:11.0pt;font-family:"Calibri","sans-serif";color:#1F497D'><o:p> </o:p></span></p><p class=MsoNormal><b><span style='font-size:10.0pt;font-family:"Tahoma","sans-serif"'>From:</span></b><span style='font-size:10.0pt;font-family:"Tahoma","sans-serif"'> extropy-chat-bounces@lists.extropy.org [mailto:extropy-chat-bounces@lists.extropy.org] <b>On Behalf Of </b>Adrian Tymes<br><b><span style='color:#1F497D'>…</span></b></span><o:p></o:p></p><div><div><div><div><div><div><div><p class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:auto'><span style='font-size:11.0pt;font-family:"Calibri","sans-serif";color:#1F497D'>>>…</span><span style='font-size:11.0pt;font-family:"Calibri","sans-serif";color:#1F497D'>Some of you mathematical hotties, do explain that observation please, using differential equations, or whatever is your favorite mathematical technology, including even a digital model or a Matlab sim. If you manage it, the grand prize will be yours: my sincere everlasting admiration.</span><o:p></o:p></p></div></div></div></div><div><p class=MsoNormal><o:p> </o:p></p></div><div><p class=MsoNormal style='margin-bottom:12.0pt'><span style='color:#1F497D'>>…</span>Who needs equations?<o:p></o:p></p></div><div><p class=MsoNormal><span style='color:#1F497D'>…<o:p></o:p></span></p><p class=MsoNormal><span style='font-size:11.0pt;font-family:"Calibri","sans-serif";color:#1F497D'><o:p> </o:p></span></p><p class=MsoNormal><span style='font-size:11.0pt;font-family:"Calibri","sans-serif";color:#1F497D'>I needs equations.<o:p></o:p></span></p><p class=MsoNormal><span style='font-size:11.0pt;font-family:"Calibri","sans-serif";color:#1F497D'><o:p> </o:p></span></p><p class=MsoNormal><span style='font-size:11.0pt;font-family:"Calibri","sans-serif";color:#1F497D'>Consider an S-shaped sprinkler suspended from a latex hose, underwater. Imagine water is pumped thru the sprinkler in the traditional manner at 1 ml per second, and we discover the sprinkler rotates positive pi radians. 2 ml per second rotates it 2 pi radians and so on.<o:p></o:p></span></p><p class=MsoNormal><span style='font-size:11.0pt;font-family:"Calibri","sans-serif";color:#1F497D'><o:p> </o:p></span></p><p class=MsoNormal><span style='font-size:11.0pt;font-family:"Calibri","sans-serif";color:#1F497D'>Now imagine pumping water thru it backwards. For any steady flow, we observe zero rotation. If the flow is accelerated backwards at 1 ml per second squared, what is the rotation? If the flow is 2 ml per second squared, do we get twice the rotation? If we use a denser fluid, does it require the same flow acceleration to produce a rotation? Or less? Or more? Could we use a compressible fluid like air and get similar results? Does the shape of the nozzles come into play? There is a lot of science in that simple experimental setup. <o:p></o:p></span></p><p class=MsoNormal><span style='font-size:11.0pt;font-family:"Calibri","sans-serif";color:#1F497D'><o:p> </o:p></span></p><p class=MsoNormal><span style='font-size:11.0pt;font-family:"Calibri","sans-serif";color:#1F497D'>Truth: we don’t *<b>really</b>* understand a system until we can derive a system of simultaneous differential equations that can correctly model its behavior.<o:p></o:p></span></p><p class=MsoNormal><span style='font-size:11.0pt;font-family:"Calibri","sans-serif";color:#1F497D'><o:p> </o:p></span></p><p class=MsoNormal><span style='font-size:11.0pt;font-family:"Calibri","sans-serif";color:#1F497D'>spike<o:p></o:p></span></p></div></div></div></div></div></body></html>