<font size="4">On Sun, May 5, 2013  Gordon <<a href="mailto:gts_2000@yahoo.com">gts_2000@yahoo.com</a>> wrote:<br><br></font><blockquote style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex" class="gmail_quote">
<font size="4">> Those probability waves are thought to propagate continuously<br></font></blockquote><br><font size="4"><span style="font-family:times new roman,serif">No, there is no such thing as probability waves. You're thinking of the Schrodinger Wave Equation (SWE) and yes it is continuous and deterministic, but that function is an unobservable abstraction, a calculating device no more real than lines of longitude and latitude. To get something real that you can see you must square the amplitude of the SWE of a <font size="4">particle</font> at a <font size="4">point</font> and that will give you the probability you will observe <font size="4">the</font> particle at that <font size="4">point</font>, and probability, unlike the SWE, is something that you can observe and measure. But Schrodinger's equation has an "i"  (the square root of -1) in it and that means very different quantum wave functions can give the exact same probability distribution when you square it; remember with i you get weird stuff like i^2=i^6 =-1 and i^4=i^100=1. <br>
<br>And in the non quantum world if the probability of X happening is 1/2 and the probability of unrelated event Y happening is 1/2 then the probability of X and Y happening is 1/4, but in Quantum Mechanics that's not necessarily t<font size="4">rue</font> because now you must deal with i and complex numbers. I think you could say that mathematically it's the existence of that damn i in the SWE that makes Quantum Mechanics so weird.  <br>
<br>  John K Clark <br></span></font><br><br><br><br>