<div dir="ltr">>  Unfortunately the darn thing is pretty stable under room conditions.<div class=""><div id=":330" class="" tabindex="0"><img class="" src="https://mail.google.com/mail/u/0/images/cleardot.gif"><br></div>
<div id=":330" class="" tabindex="0">Or fortunately. Otherwise to much would have fused long ago? <br><br></div><div id=":330" class="" tabindex="0">OTOH I can't be 100% certain, that there is no "loophole" somewhere. To many real life fusors ARE working. That they use more energy than they produce, might be only a coincidence. With some clever improvement this might change.<br>
<br></div><div id=":330" class="" tabindex="0">Had been no fusors, I wouldn't say a thing on this matter.<br><br><a href="http://en.wikipedia.org/wiki/Fusor">http://en.wikipedia.org/wiki/Fusor</a><br></div></div></div>
<div class="gmail_extra"><br><br><div class="gmail_quote">On Sun, May 26, 2013 at 6:06 PM, Anders Sandberg <span dir="ltr"><<a href="mailto:anders@aleph.se" target="_blank">anders@aleph.se</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">
<div class="im">On 2013-05-26 13:03, Tomaz Kristan wrote:<br>
<blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">
The only real question is, whether there is a combination of any (non-radioactive) metal and hydrogen (or some other light stuff) which yields to some significant nuclear reactions under "normal, room" conditions?<br>

</blockquote>
<br></div>
Check out the physics on<br>
<a href="http://fds.oup.com/www.oup.co.uk/pdf/0-19-856264-0.pdf" target="_blank">http://fds.oup.com/www.oup.co.<u></u>uk/pdf/0-19-856264-0.pdf</a> and<br>
<a href="http://www.kayelaby.npl.co.uk/atomic_and_nuclear_physics/4_7/4_7_4.html" target="_blank">http://www.kayelaby.npl.co.uk/<u></u>atomic_and_nuclear_physics/4_<u></u>7/4_7_4.html</a><br>
This would apply to cold fusion too. You need to get up to tens of keV of energy to get any fusion reactions, compress stuff to 10^9 g/cm^3, or add muons. It looks like there are no ordinary elements that gives you nuclear reactions at normal temperatures or densities. Deuterium is the most fusable element you can get - a decent cross section, large energy gain, and reacts at low energies. Unfortunately the darn thing is pretty stable under room conditions.<div class="im HOEnZb">
<br>
<br>
-- <br>
Dr Anders Sandberg<br>
Future of Humanity Institute<br>
Oxford Martin School<br>
Oxford University<br>
<br></div><div class="HOEnZb"><div class="h5">
______________________________<u></u>_________________<br>
extropy-chat mailing list<br>
<a href="mailto:extropy-chat@lists.extropy.org" target="_blank">extropy-chat@lists.extropy.org</a><br>
<a href="http://lists.extropy.org/mailman/listinfo.cgi/extropy-chat" target="_blank">http://lists.extropy.org/<u></u>mailman/listinfo.cgi/extropy-<u></u>chat</a><br>
</div></div></blockquote></div><br></div>