<div dir="ltr">On Sun, Sep 29, 2013 at 5:26 AM, Anders Sandberg <span dir="ltr"><<a href="mailto:anders@aleph.se" target="_blank">anders@aleph.se</a>></span> wrote:<br><div class="gmail_extra"><div class="gmail_quote">
<br><blockquote style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex" class="gmail_quote"><blockquote style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex" class="gmail_quote">
<a href="https://www.youtube.com/watch?v=V89qvy8whxY" target="_blank">>> https://www.youtube.com/watch?v=V89qvy8whxY</a><br>
</blockquote><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex">
<br>
Original paper at <a href="http://arxiv.org/abs/1308.0464" target="_blank">http://arxiv.org/abs/1308.0464</a><br></blockquote></blockquote><div><blockquote style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex" class="gmail_quote">
<br></blockquote><blockquote style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex" class="gmail_quote">> So if one can accelerate electrons to 50 GeV in 100 feet, that means a
one meter chip would presumably get you 500 MeV(linear increase in
energy by length). The paper merely claims 25 MeV/m, but 25 MeV is still
a pretty penetrating beam.<br></blockquote><div><br></div><div>They make a rather interesting comment on that subject:<br><br>"After writing of the manuscript we became aware of a recently proposed innovative scheme combining plasma based acceleration with the periodic field reversal at grating structures, which may lead to scalable accelerators with a sustained acceleration gradient up to TeV/m "<br>
<br></div><div>That paper is at:<br><br> <a href="http://arxiv.org/pdf/1306.6516v1.pdf">http://arxiv.org/pdf/1306.6516v1.pdf</a><br><br></div><div>And in that paper they say:<br><br>"In our simulations, we show that a sustained acceleration rate of 2.3 TeV/m is feasible with the plasma structures."<br>
<br></div></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex">> I don't think this design lends itself to firing a lot of electrons </blockquote>
<div><br></div><div>I would think you could have an array of accelerator channels spaced exactly one wavelength apart in the vertical direction.<br></div><div><br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex">
> as a particle beam weapon (efficiency of energy transfer from the laser into the electrons will still be low; you could just fire the laser at the target) </blockquote><div><br></div><div>I agree, I don't think electron beams would make much of a weapon, but who knows, weapon makers can be ingenious.<br>
<br></div><blockquote style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex" class="gmail_quote"><div> > but as they say, this is a good electron source for free-electron X-ray lasers.<span class=""><font color="#888888"><br>
</font></span></div></blockquote><div><br></div><div>And cheap practical X-ray lasers could have profound implications for microchip manufacturing, and phase contrast X-ray imaging, and yes perhaps weapons. <br><br></div>
<div> John K Clark<br></div></div></div></div>