<div dir="ltr">Neural coding: <br><br><h2 style="color:black;background-image:none;font-weight:normal;margin:1em 0px 0.25em;overflow:hidden;padding:0px;border-bottom-width:1px;border-bottom-style:solid;border-bottom-color:rgb(170,170,170);font-family:'Linux Libertine',Georgia,Times,serif;line-height:1.3">
<span class="" id="Coding_schemes">Coding schemes</span><span class="" style="font-size:small;margin-left:1em;vertical-align:baseline;line-height:1em;display:inline-block;white-space:nowrap;padding-right:0.25em;font-family:sans-serif"><span class="">[</span><a href="http://en.wikipedia.org/w/index.php?title=Neural_coding&action=edit§ion=3" title="Edit section: Coding schemes" style="text-decoration:none;color:rgb(11,0,128);background-image:none">edit</a><span class="">]</span></span></h2>
<p style="margin:0.5em 0px;line-height:22.399999618530273px;color:rgb(37,37,37);font-family:sans-serif;font-size:14px">A sequence, or 'train', of spikes may contain information based on different coding schemes. In motor neurons, for example, the strength at which an innervated muscle is flexed depends solely on the 'firing rate', the average number of spikes per unit time (a 'rate code'). At the other end, a complex '<a href="http://en.wikipedia.org/wiki/Temporal_code" title="Temporal code" class="" style="text-decoration:none;color:rgb(11,0,128);background-image:none">temporal code</a>' is based on the precise timing of single spikes. They may be locked to an external stimulus such as in the <a href="http://en.wikipedia.org/wiki/Auditory_system" title="Auditory system" style="text-decoration:none;color:rgb(11,0,128);background-image:none">auditory system</a> or be generated intrinsically by the neural circuitry.<sup id="cite_ref-Gerstner97_5-0" class="" style="line-height:1"><a href="http://en.wikipedia.org/wiki/Neural_coding#cite_note-Gerstner97-5" style="text-decoration:none;color:rgb(11,0,128);background-image:none;white-space:nowrap">[5]</a></sup></p>
<p style="margin:0.5em 0px;line-height:22.399999618530273px;color:rgb(37,37,37);font-family:sans-serif;font-size:14px">Whether neurons use rate coding or temporal coding is a topic of intense debate within the neuroscience community, even though there is no clear definition of what these terms mean.</p>
<p style="margin:0.5em 0px;line-height:22.399999618530273px;color:rgb(37,37,37);font-family:sans-serif;font-size:14px"><br></p><p style="margin:0.5em 0px;line-height:22.399999618530273px;color:rgb(37,37,37);font-family:sans-serif;font-size:14px">
<br></p><p style="margin:0.5em 0px;line-height:22.399999618530273px;color:rgb(37,37,37);font-family:sans-serif;font-size:14px">from wiki </p></div><div class="gmail_extra"><br><br><div class="gmail_quote">On Tue, May 20, 2014 at 6:00 PM, Giovanni Santostasi <span dir="ltr"><<a href="mailto:gsantostasi@gmail.com" target="_blank">gsantostasi@gmail.com</a>></span> wrote:<br>
<blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr">Not sure what point you are trying to make. Kaku was trying to use the neuron bimodal states (firing or not) to calculate the set of all possible combination of states that give rise to thought. It is a simplistic assumption. <div>
<br></div><div>One could say that what matters is how information is coded and that is not completely understood. It can be a combination of things, firing times, amplitude modulation, two or more signals arriving at the same time or in a precise sequence and so on. </div>
<div><br></div><div>Kaku was doing what physicists often do, approximating a cow with a sphere. It is easy in that way to calculate the volume of the cow and it is a roughly good approximation. <div><br></div><div><br></div>
<div><br></div><div><br></div><div><br></div></div></div><div class="gmail_extra"><br><br><div class="gmail_quote"><div><div class="h5">On Tue, May 20, 2014 at 5:49 PM, William Flynn Wallace <span dir="ltr"><<a href="mailto:foozler83@gmail.com" target="_blank">foozler83@gmail.com</a>></span> wrote:<br>
</div></div><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div><div class="h5"><div dir="ltr"><div class="gmail_default" style="font-family:comic sans ms,sans-serif;font-size:large;color:rgb(11,83,148)">
OK, so they rest. I give up. But do you agree that there are three states of the neuron?<br></div>
</div><div class="gmail_extra"><br><br><div class="gmail_quote"><div><div>On Tue, May 20, 2014 at 5:46 PM, Giovanni Santostasi <span dir="ltr"><<a href="mailto:gsantostasi@gmail.com" target="_blank">gsantostasi@gmail.com</a>></span> wrote:<br>
</div></div><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div><div><div dir="ltr">In fact, one per second is resting for neurons. That is what happens when you have slow waves oscillations that corresponds to the deepest state of sleep. </div>
<div class="gmail_extra"><br><br><div class="gmail_quote"><div><div>
On Tue, May 20, 2014 at 5:23 PM, William Flynn Wallace <span dir="ltr"><<a href="mailto:foozler83@gmail.com" target="_blank">foozler83@gmail.com</a>></span> wrote:<br></div></div><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">
<div><div>
<div dir="ltr"><div class="gmail_default" style="font-family:comic sans ms,sans-serif;font-size:large;color:#0b5394"><br></div><br><div class="gmail_quote"><div class="gmail_default" style="font-family:comic sans ms,sans-serif;font-size:large;color:rgb(11,83,148)">
p.s. Still, there are three states: one in which the neuron fires at one per second (resting level - no input), one in which it fires faster (receiving excitatory input), and one in which it fires slower (receiving inhibitory input). So, firing or not firing is wrong in the context. bill w<br>
</div><br><br><div dir="ltr"><div style="font-family:comic sans ms,sans-serif;font-size:large;color:rgb(11,83,148)">Well, OK, but the slowest they get is about one spike per second (up to 30) without external stimulation. Not exactly resting. bill w<br>
</div></div><div><div><div class="gmail_extra"><br><br><div class="gmail_quote">On Tue, May 20, 2014 at 4:03 PM, Giovanni Santostasi <span dir="ltr"><<a href="mailto:gsantostasi@gmail.com" target="_blank">gsantostasi@gmail.com</a>></span> wrote:<br>
<blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr">What you are thinking that neurons are at a particular potential when at rest (about -70 mV). But they are not firing all the time at all. There are times when they are silent. </div>
<div class="gmail_extra">
<br><br><div class="gmail_quote"><div><div>On Tue, May 20, 2014 at 3:42 PM, William Flynn Wallace <span dir="ltr"><<a href="mailto:foozler83@gmail.com" target="_blank">foozler83@gmail.com</a>></span> wrote:<br>
</div></div><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div><div>
<div dir="ltr"><div style="font-family:comic sans ms,sans-serif;font-size:large;color:rgb(11,83,148)">In The Future on the Mind, by Michio Kaku, he says as follows (facing page 342):<br><br></div><div style="font-family:comic sans ms,sans-serif;font-size:large;color:rgb(11,83,148)">
"Define complex in terms of the total amount of information that can be stored. The closet rival to the brain might be the info contained w/in our DNA. Three billion base pairs containing one of four aids, therefore total amount of info is four to the three billionth power. The brain can store much more - one hundred billion neurons, <u>which can either fire or not fire</u>. Hence there are two raised to the one-hundred-billionth power initial states of the brain.... the states change every few milliseconds. A simple thought may contain one hundred generations of neural firings. Hence there are two raised by one hundred billion, all raised to the hundredth power possible thoughts contained in one hundred generations. Brains are ceaselessly computing. Therefore the total number of thoughts possible within N generations is two to the one-hundred-billionth power, all raised to the Nth power.<br>
<br></div><div style="font-family:comic sans ms,sans-serif;font-size:large;color:rgb(11,83,148)">My question concerns the underlined clause: there are three states to a neuron: increasing its rate, decreasing its rate, and staying the same. Kaku says that a neuron fires or not. This seems to say that a neuron is idle, waiting for stimuli, whereas I think that no neuron ever is not firing.<br>
<br></div><div style="font-family:comic sans ms,sans-serif;font-size:large;color:rgb(11,83,148)">Am I confused again, or is he wrong? bill w<br></div></div>
<br></div></div>_______________________________________________<br>
extropy-chat mailing list<br>
<a href="mailto:extropy-chat@lists.extropy.org" target="_blank">extropy-chat@lists.extropy.org</a><br>
<a href="http://lists.extropy.org/mailman/listinfo.cgi/extropy-chat" target="_blank">http://lists.extropy.org/mailman/listinfo.cgi/extropy-chat</a><br>
<br></blockquote></div><br></div>
<br>_______________________________________________<br>
extropy-chat mailing list<br>
<a href="mailto:extropy-chat@lists.extropy.org" target="_blank">extropy-chat@lists.extropy.org</a><br>
<a href="http://lists.extropy.org/mailman/listinfo.cgi/extropy-chat" target="_blank">http://lists.extropy.org/mailman/listinfo.cgi/extropy-chat</a><br>
<br></blockquote></div><br></div>
</div></div></div><br></div>
<br></div></div>_______________________________________________<br>
extropy-chat mailing list<br>
<a href="mailto:extropy-chat@lists.extropy.org" target="_blank">extropy-chat@lists.extropy.org</a><br>
<a href="http://lists.extropy.org/mailman/listinfo.cgi/extropy-chat" target="_blank">http://lists.extropy.org/mailman/listinfo.cgi/extropy-chat</a><br>
<br></blockquote></div><br></div>
<br></div></div>_______________________________________________<br>
extropy-chat mailing list<br>
<a href="mailto:extropy-chat@lists.extropy.org" target="_blank">extropy-chat@lists.extropy.org</a><br>
<a href="http://lists.extropy.org/mailman/listinfo.cgi/extropy-chat" target="_blank">http://lists.extropy.org/mailman/listinfo.cgi/extropy-chat</a><br>
<br></blockquote></div><br></div>
<br></div></div>_______________________________________________<br>
extropy-chat mailing list<br>
<a href="mailto:extropy-chat@lists.extropy.org" target="_blank">extropy-chat@lists.extropy.org</a><br>
<a href="http://lists.extropy.org/mailman/listinfo.cgi/extropy-chat" target="_blank">http://lists.extropy.org/mailman/listinfo.cgi/extropy-chat</a><br>
<br></blockquote></div><br></div>
</blockquote></div><br></div>