<br>
<font face="tahoma, arial, helvetica, sans-serif"><span style="font-size: 12px;">Not exactly on topic but interesting indeed</span></font><div style="font-family: tahoma, arial, helvetica, sans-serif; font-size: 12px;"><br></div><div><b style="font-family: Verdana, Geneva, Arial, Helvetica, sans-serif; font-size: 12.8000001907349px; background-color: rgb(255, 255, 255);">http://tinyurl.com/l4v4bc3</b></div><div><font face="Verdana, Geneva, Arial, Helvetica, sans-serif"><span style="font-size: 12.8000001907349px;"><b><br></b></span></font></div><div><h1 class="title mathjax" style="margin: 0.5em 0px 0.5em 20px; font-size: x-large; line-height: 28.7999992370605px; font-family: 'Lucida Grande', helvetica, arial, verdana, sans-serif; background-color: rgb(255, 255, 255);">http://arxiv.org/abs/1502.06880</h1><h1 class="title mathjax" style="margin: 0.5em 0px 0.5em 20px; font-size: x-large; line-height: 28.7999992370605px; font-family: 'Lucida Grande', helvetica, arial, verdana, sans-serif; background-color: rgb(255, 255, 255);">Quantum Criticality at the Origin of Life</h1><div class="authors" style="margin: 0.5em 0px 0.5em 20px; line-height: 24px; font-family: 'Lucida Grande', helvetica, arial, verdana, sans-serif; background-color: rgb(255, 255, 255);"><a href="http://arxiv.org/find/cond-mat/1/au:+Vattay_G/0/1/0/all/0/1" style="text-decoration: none;">Gabor Vattay</a>, <a href="http://arxiv.org/find/cond-mat/1/au:+Salahub_D/0/1/0/all/0/1" style="text-decoration: none;">Dennis Salahub</a>, <a href="http://arxiv.org/find/cond-mat/1/au:+Csabai_I/0/1/0/all/0/1" style="text-decoration: none;">Istvan Csabai</a>, <a href="http://arxiv.org/find/cond-mat/1/au:+Nassimi_A/0/1/0/all/0/1" style="text-decoration: none;">Ali Nassimi</a>, <a href="http://arxiv.org/find/cond-mat/1/au:+Kaufmann_S/0/1/0/all/0/1" style="text-decoration: none;">Stuart A. Kaufmann</a></div><div class="dateline" style="margin: 0.5em 0px 0.5em 20px; font-style: italic; font-size: small; font-family: 'Lucida Grande', helvetica, arial, verdana, sans-serif; background-color: rgb(255, 255, 255);">(Submitted on 24 Feb 2015 (<a href="http://arxiv.org/abs/1502.06880v1" style="text-decoration: none;">v1</a>), last revised 3 Mar 2015 (this version, v2))</div><blockquote class="abstract mathjax" style="line-height: 20.1599998474121px; margin-bottom: 1.5em; font-family: 'Lucida Grande', helvetica, arial, verdana, sans-serif; font-size: 14.3999996185303px; background-color: rgb(255, 255, 255);">Why life persists at the edge of chaos is a question at the very heart of evolution. Here we show that molecules taking part in biochemical processes from small molecules to proteins are critical quantum mechanically. Electronic Hamiltonians of biomolecules are tuned exactly to the critical point of the metal-insulator transition separating the Anderson localized insulator phase from the conducting disordered metal phase. Using tools from Random Matrix Theory we confirm that the energy level statistics of these biomolecules show the universal transitional distribution of the metal-insulator critical point and the wave functions are multifractals in accordance with the theory of Anderson transitions. The findings point to the existence of a universal mechanism of charge transport in living matter. The revealed bio-conductor material is neither a metal nor an insulator but a new quantum critical material which can exist only in highly evolved systems and has unique material properties.</blockquote>
<blockquote style="font-family: tahoma, arial, helvetica, sans-serif; font-size: 12px;"><br></blockquote>
</div>