<br>
<br>
<blockquote>
----Messaggio originale----<br>
Da: atymes@gmail.com<br>
Data: 1-set-2015 2.27<br>
A: "ExI chat list"<extropy-chat@lists.extropy.org><br>
Cc: <scerir@alice.it><br>
Ogg: Re: [ExI] Cramer on impossibility of FTL communication<br>
<br>
<p dir="ltr">In this case, the problem seems to be the limited speed of transmission of information about the information.</p>
<p dir="ltr">If you entangle photons A and B, let B travel away, then measure A, you know what B is...but your knowledge of it is not immediately available where B is.  You can tell people, but that itself does not travel faster than light.  As far as B and those around it are concerned, B remains entangled until the light cone of your measurement of A reaches them.</p>
<p dir="ltr">Is that not the case?</p><p dir="ltr"><br></p><p dir="ltr">######<br><br>Hi Adrian,<br><br>Yes and no. <br><br>If you have a source of entangled photons and this source is much much closer to<br> location A than to location B, and if A and B are close enough, an observer O could jump from A to B and you can imagine he could perform magic tricks. <br><br>In other words ... in general the problem arises because obsevers are<br> local, and quantum correlations are not. But if you have ... nonlocal<br> observers ....<br><br>No story in space-time can describe nonlocal correlations: we have no tool<br> in our story-toolbox to talk about nonlocal correlations (Gisin). Hence,<br> we usually say things like "event A influences event B", or<br>"event A has a spooky action at a distance on event B" or<br> "event A causes a collapse of the wavefunction at location B".<br> But we know that this is all wrong: there is no time ordering between the<br> events A and B ("acausality"). Hence no story in time is<br> appropriate. Moreover, the distance between A and B is irrelevant. Hence<br> the distance should not occur in our story. <br><br>A good review paper about all that (and about many different - and very<br> often also smart - attempts to build quantum signalling machines) is this<br> one, by GianCarlo Ghirardi <br><a href="http://arxiv.org/abs/1305.2305.">http://arxiv.org/abs/1305.2305.</a><br>See also <br><a href="http://arxiv.org/abs/1306.1133">http://arxiv.org/abs/1306.1133</a><br><a href="http://arxiv.org/abs/1411.0893">http://arxiv.org/abs/1411.0893</a> . <br>Ghirardi is the "G" of the GRW interpretation. <br>For different arguments see Gisin here (Appendix B)<br><a href="http://arxiv.org/pdf/1011.3440v1.pdf">http://arxiv.org/pdf/1011.3440v1.pdf</a><br>Scarani and Gisin here<br><a href="http://www.unige.ch/gap/quantum/_media/publications:bib:v35_328.pdf">http://www.unige.ch/gap/quantum/_media/publications:bib:v35_328.pdf</a><br><br>Another interesting point is the speed of quantum information or, to say it<br> better, the speed of quantum "influences" (between the two parts<br> of the entangled quantum system, i.e. the two parts of a bi-photon). There<br> are<br>many interesting papers. <br><br><a href="http://arxiv.org/abs/1110.3795">http://arxiv.org/abs/1110.3795</a> (The experimental violation of Bell<br> inequalities using spacelike separated measurements precludes the<br> explanation of quantum correlations through causal influences propagating<br> at subluminal speed. Yet, any such experimental violation could always be<br> explained in principle through models based on hidden influences<br> propagating at a finite speed v>c, provided v is large enough. Here, we<br> show that for any finite speed v with c<v<infinity, such models<br> predict correlations that can be exploited for faster-than-light<br> communication. This superluminal communication does not require access to<br> any hidden physical quantities, but only the manipulation of measurement<br> devices at the level of our present-day description of quantum<br> experiments. Hence, assuming the impossibility of using nonlocal<br> correlations for superluminal communication, we exclude any possible<br> explanation of quantum correlations in terms of influences propagating at<br> any finite speed. Our result uncovers a new aspect of the complex<br> relationship between multipartite quantum nonlocality and the<br> impossibility of signalling.)<br><br><a href="http://arxiv.org/abs/1304.0532">http://arxiv.org/abs/1304.0532</a> (We discuss models that attempt to provide<br> an explanation for the violation of Bell inequalities at a distance in<br> terms of hidden influences. These models reproduce the quantum<br>correlations in most situations, but are restricted to produce local<br> correlations in some configurations. The argument presented in Bancal et<br> al., Nature Physics 8, 867, (2012), applies to all of these models, which<br> can thus<br>be proved to allow for faster-than-light communication. In other words, the<br> signalling character of these models cannot remain hidden.)<br><br><a href="http://arxiv.org/abs/1011.3440">http://arxiv.org/abs/1011.3440</a> (Are There Quantum Effects Coming from<br> Outside Space-time? Nonlocality, free will and "no many-worlds".)<br><br><a href="http://arxiv.org/abs/1002.1392">http://arxiv.org/abs/1002.1392</a> (In Bell inequality tests, the evolution of<br> the wavefunction is not covariant, i.e. not invariant under velocity boost<br> that change the time ordering of events, but the laws that govern the<br> probability distribution of possible results are. In this note I<br> investigate what this could mean and whether there could be some covariant<br> "real quantum stuff". This clarifies the implication of the Free<br> Will Theorem and of relativistic spontaneous localization models based on<br> the flash ontology (GRW). Some implications for the concept of time(s) are<br> spelled out.)<br><br><a href="http://arxiv.org/abs/0808.3316">http://arxiv.org/abs/0808.3316</a> (A real spooky action at a distance<br> wouldrequire a faster than light influence defined in some hypothetical<br> universally privileged reference frame. Here we put stringent experimental<br> bounds on the speed of all such hypothetical influences. We performed a<br> Bell test during more than 24 hours between two villages separated by 18<br> km and approximately east-west oriented, with the source located precisely<br> in the middle. We continuously observed 2-photon interferences well above<br> the Bell inequality threshold. Taking advantage of the Earth's<br> rotation, the configuration of our experiment allowed us to determine, for<br> any hypothetically privileged frame, a lower bound for the speed of this<br> spooky influence. For instance, if such a privileged reference frame<br> exists and is such that the Earth's speed in this frame is less than<br> 10^-3 that of the speed of light, then the speed of this spooky influence<br> would have to exceed that of light by at least 4 orders of magnitude.)<br><br><a href="http://arxiv.org/abs/quant-ph/0212078">http://arxiv.org/abs/quant-ph/0212078</a> (We study the apparent nonlocality of<br> quantum mechanics as a transport problem. If space is a physical entity<br> through which quantum information QI must be transported, then one can<br> define its speed. If not, QI exists apart from space, making space in some<br> sense 'nonphysical'. But we can still assign a `speed' of QI<br> to such models based on their properties. In both cases, classical<br> information must still travel at "c", though in the latter case<br> the origin of local spacetime itself is a puzzle. We consider the<br> properties of different regimes for this speed of QI, and relevant quantum<br> interpretations. For example, we show that the Many Worlds Interpretation<br> MWI is nonlocal because it is what we call `spatially complete'.)<br><br><a href="http://arxiv.org/abs/quant-ph/0508016">http://arxiv.org/abs/quant-ph/0508016</a> (This article identifies a series of<br> properties common to all theories that do not allow for superluminal<br> signaling and predict the violation of Bell inequalities. Intrinsic<br> randomness, uncertainty due to the incompatibility of two observables,<br> monogamy of correlations, impossibility of perfect cloning, privacy of<br> correlations, bounds in the shareability of some states; all these<br> phenomena are solely a consequence of the no-signaling principle and<br> nonlocality. In particular, it is shown that for any distribution, the<br> properties of (i) nonlocal, (ii) no arbitrarily shareable and (iii)<br> positive secrecy content are equivalent.)<br><br><a href="http://arxiv.org/abs/quant-ph/0503007">http://arxiv.org/abs/quant-ph/0503007</a> (In relativity there is space-time<br> out there. In quantum mechanics there is entanglement. Entanglement<br> manifests itself by producing correlations between classical events (e.g.<br> the firing of some detectors) at any two space-time locations. If the<br> locations are time-like separated, i.e. one is in the future of the other,<br> then there is no specific difficulty to understand the correlations. But<br> if the two locations are space-like separated, the problem is different.<br> How can the two space-time locations out there know about what happens in<br> each other without any sort of communication? If space-time really exists,<br> the locations must do something like communicating. Or it was all set up<br> at the Beginning. But the correlations depend also on the free choice of<br> the experimentalists, one in each space-time location. This allowed John<br> Bell to derive his inequality and the experimentalists to violate it, thus<br> refuting the assumption that it was all set up at the beginning: the<br> Correlations can't be explained by common causes.)<br><br><a href="http://arxiv.org/abs/quant-ph/0410025">http://arxiv.org/abs/quant-ph/0410025</a> (Since Bell's theorem, it is<br> known that quantum correlations cannot be described by local variables<br> (LV) alone: if one does not want to abandon classical mechanisms for<br> correlations, a superluminal form of communication among the particles<br> must be postulated. A natural question is whether such a postulate would<br> imply the possibility of superluminal signaling. Here we show that the<br> assumption of finite-speed superluminal communication indeed leads to<br> signaling when no LV are present, and more generally when only LV<br> derivable from quantum statistics are allowed. When the most general LV<br> are allowed, we<br>prove in a specific case that the model can be made again consistent with<br> relativity, but the question remains open in general.)<br><br></p>
<br>
</blockquote><br>