<html><head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
</head>
<body text="#000000" bgcolor="#ffffff"><div><div style="font-family: Calibri,sans-serif; font-size: 11pt;">A really informative YouTube by sejnowski on the 3d structure of neuropil that also leads to the extracellular matrix. 40-110nm thick. Sheet/tunnel matrix. <br><br>http://m.youtube.com/watch?v=FZT6c0V8f<br><br></div></div><div dir="ltr"><hr><span style="font-family: Calibri,sans-serif; font-size: 11pt; font-weight: bold;">From: </span><span style="font-family: Calibri,sans-serif; font-size: 11pt;"><a href="mailto:anders@aleph.se">Anders Sandberg</a></span><br><span style="font-family: Calibri,sans-serif; font-size: 11pt; font-weight: bold;">Sent: </span><span style="font-family: Calibri,sans-serif; font-size: 11pt;">24/01/2016 11:51 PM</span><br><span style="font-family: Calibri,sans-serif; font-size: 11pt; font-weight: bold;">To: </span><span style="font-family: Calibri,sans-serif; font-size: 11pt;"><a href="mailto:extropy-chat@lists.extropy.org">extropy-chat@lists.extropy.org</a></span><br><span style="font-family: Calibri,sans-serif; font-size: 11pt; font-weight: bold;">Subject: </span><span style="font-family: Calibri,sans-serif; font-size: 11pt;">Re: [ExI] Cryonics punched cards and the brain</span><br><br></div>
<div class="moz-cite-prefix">Neat. Generally LTP is seen as the
first of a longer cascade of fixation of memories. Most research
has been about cellular skeleton changes, but perineuronal nets
might also work. <br>
<br>
It might actually be a good experiment for cryonics to see what
the process does to these nets. (I think John mixed up the
perioneuronal net (protein networks) with perineuronal space in
the sleep reference. )<br>
<br>
<br>
Incidentally, the Sejnowski lab had a nice result on the
distribution of synaptic strengths:<br>
<a style='background: rgb(255, 255, 255); font: bold 12.8px/19.2px Helvetica, Arial, "Liberation Sans", FreeSans, sans-serif; margin: 0px; padding: 0px; outline: 0px; border: 0px currentColor; border-image: none; text-align: left; color: gray; text-transform: none; text-indent: 0px; letter-spacing: normal; text-decoration: none; word-spacing: 0px; vertical-align: baseline; white-space: normal; widows: 1; font-size-adjust: none; font-stretch: normal; -webkit-text-stroke-width: 0px;' href="http://papers.cnl.salk.edu/index.php?SearchText=Bartol%2C%20T.%20M.%20Jr.%20Bromer%2C%20C.%20Kinney%2C%20J.%20P.%20Chirillo%2C%20M.%20A.%20Bourne%2C%20J.%20N.%20Harris%2C%20K.%20M.%20Sejnowski%2C%20T.%20J.">Bartol, T. M. Jr. Bromer, C.
Kinney, J. P. Chirillo, M. A. Bourne, J. N. Harris, K. M.
Sejnowski, T. J.</a><span style='font: 12.8px/19.2px Helvetica, Arial, "Liberation Sans", FreeSans, sans-serif; text-align: left; color: rgb(0, 0, 0); text-transform: none; text-indent: 0px; letter-spacing: normal; word-spacing: 0px; float: none; display: inline !important; white-space: normal; widows: 1; font-size-adjust: none; font-stretch: normal; background-color: rgb(255, 255, 255); -webkit-text-stroke-width: 0px;'><span class="Apple-converted-space"> </span>Nanoconnectomic
upper bound on the variability of synaptic plasticity, eLife,
4:e10778, 2015<span class="Apple-converted-space"> </span></span><br>
</div>
<a class="moz-txt-link-freetext" href="http://papers.cnl.salk.edu/PDFs/Nanoconnectomic%20upper%20bound%20on%20the%20variability%20of%20synaptic%20plasticity%202015-4475.pdf">http://papers.cnl.salk.edu/PDFs/Nanoconnectomic%20upper%20bound%20on%20the%20variability%20of%20synaptic%20plasticity%202015-4475.pdf</a><br>
They show that each synapse stores at most about 4.7 bits. While
their press material claims this is "an order of magnitude more"
than previous estimates, the actual estimate most people have been
doing is about one bit, so the difference isn't dramatic. But doing
nanoconnectomics is an awesome method.<br>
<br>
<pre class="moz-signature" cols="72">--
Dr Anders Sandberg
Future of Humanity Institute
Oxford Martin School
Oxford University
</pre>
</body></html>