<div dir="ltr"><span style="font-size:12.8px">> The strain produced by the waves decays with 1/r. </span><br style="font-size:12.8px"><br style="font-size:12.8px"><span style="font-size:12.8px">> Tidal forces are proportional to 1/r^3 so they decay very fast as you move away from the source. </span><br><div><span style="font-size:12.8px"><br></span></div><div><span style="font-size:12.8px">It's then either G-wave originated 10^9 ly away, or some tidal effect 10^3 ly away. Like a neutron star inner collapse to a black hole, for example.</span></div><div><span style="font-size:12.8px"><br></span></div><div><span style="font-size:12.8px">Those two are indistinguishable for LIGO, I presume.</span></div></div><div class="gmail_extra"><br><div class="gmail_quote">On Fri, Feb 12, 2016 at 3:40 PM, Giovanni Santostasi <span dir="ltr"><<a href="mailto:gsantostasi@gmail.com" target="_blank">gsantostasi@gmail.com</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr">The reason they are called waves is because the calculation of the bending of space time is done under the assumption the detection is performed far away from the source. It is a linearization process that simplifies the very complicated Einstein equation (that by the way we don't know how to solve fully even computationally).<br><br><br> As with EM radiation if you are too close to the source you get all kind of non linear effects (even more so with gravity) and you don't get the nice linear waves (2 waves with amplitude A sum up to 1 wave with amplitude 2 A) you get when you do the calculation in the radiation field. <br>When you solve the Einstein equations at a large distance from a source like two mutually orbiting masses then you get a solution that looks like a wave with a certain frequency and frequency derivative (and you can deduce the speed of this wave from the constants involved). The strain produced by the waves decays with 1/r. <br><br>Tidal forces are proportional to 1/r^3 so they decay very fast as you move away from the source. <div>So tidal forces are part of the same phenomenon of space-time warping but not gravitational waves per se. </div><div><br></div><div><br></div><div><br></div><img src="http://t.sidekickopen35.com/e1t/o/5/f18dQhb0S7ks8dDMPbW2n0x6l2B9gXrN7sKj6v4LR3dW8qSMPY7dKPKPW7fRYjz2zlZNzW5CvrmQ1k1H6H0?si=6537132302139392&pi=34138223-4c5d-4c3b-84e5-96108f3099ed" style="display:none!important" height="1" width="1"></div><div class="HOEnZb"><div class="h5"><div class="gmail_extra"><br><div class="gmail_quote">On Fri, Feb 12, 2016 at 2:40 AM, Tomaz Kristan <span dir="ltr"><<a href="mailto:protokol2020@gmail.com" target="_blank">protokol2020@gmail.com</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr">Spike ... and everybody else.<div><br></div><div>I have the following problem. Merging of two distant black holes bends those mirrors. More or less like the Moon or a plane flying above, also bends those V or L shape structure. We call it - the tidal force as a function of time. And this is routinely dismissed as not a gravity wave,</div><div><br></div><div>Now .. in a Newtonian world, a merging of two distant black holes would still be detectable as a tidal force function developing in time.</div><div><br></div><div>And a big enough tidal force oscillation can kill you as well.</div><div><br></div><div>My wrong prognosis was only, that they will not announce this detection yet. But they did.</div><div><br></div><div><br></div></div><div class="gmail_extra"><div><div><br><div class="gmail_quote">On Fri, Feb 12, 2016 at 7:30 AM, Giulio Prisco <span dir="ltr"><<a href="mailto:giulio@gmail.com" target="_blank">giulio@gmail.com</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><span>On Thu, Feb 11, 2016 at 9:35 PM, John Clark <<a href="mailto:johnkclark@gmail.com" target="_blank">johnkclark@gmail.com</a>> wrote:<br>
<br>
> And the critics were correct, the old<br>
> LIGO wasn't sensitive enough to detect gravitational waves unless you were<br>
> unrealistically lucky and 2 black holes happened to merge very near to Earth<br>
<br>
</span>I wouldn't call that "lucky." The astronomers (and the rest of<br>
humanity) would have been killed immediately by a close black hole<br>
fusion event.<br>
<div><div>_______________________________________________<br>
extropy-chat mailing list<br>
<a href="mailto:extropy-chat@lists.extropy.org" target="_blank">extropy-chat@lists.extropy.org</a><br>
<a href="http://lists.extropy.org/mailman/listinfo.cgi/extropy-chat" rel="noreferrer" target="_blank">http://lists.extropy.org/mailman/listinfo.cgi/extropy-chat</a><br>
</div></div></blockquote></div><br><br clear="all"><div><br></div></div></div><span><font color="#888888">-- <br><div><div dir="ltr"><a href="https://protokol2020.wordpress.com/" target="_blank">https://protokol2020.wordpress.com/</a><br></div></div>
</font></span></div>
<br>_______________________________________________<br>
extropy-chat mailing list<br>
<a href="mailto:extropy-chat@lists.extropy.org" target="_blank">extropy-chat@lists.extropy.org</a><br>
<a href="http://lists.extropy.org/mailman/listinfo.cgi/extropy-chat" rel="noreferrer" target="_blank">http://lists.extropy.org/mailman/listinfo.cgi/extropy-chat</a><br>
<br></blockquote></div><br></div>
</div></div><br>_______________________________________________<br>
extropy-chat mailing list<br>
<a href="mailto:extropy-chat@lists.extropy.org">extropy-chat@lists.extropy.org</a><br>
<a href="http://lists.extropy.org/mailman/listinfo.cgi/extropy-chat" rel="noreferrer" target="_blank">http://lists.extropy.org/mailman/listinfo.cgi/extropy-chat</a><br>
<br></blockquote></div><br><br clear="all"><div><br></div>-- <br><div class="gmail_signature"><div dir="ltr"><a href="https://protokol2020.wordpress.com/" target="_blank">https://protokol2020.wordpress.com/</a><br></div></div>
</div>