<html>
<head>
<meta content="text/html; charset=windows-1252"
http-equiv="Content-Type">
</head>
<body bgcolor="#FFFFFF" text="#000000">
On 2016-08-27 07:24, Adrian Tymes wrote:<br>
<blockquote
cite="mid:CALAdGNRVRMr8hvjzxUC+8QvRmMMcWYksR6rxT+BfOqhKkOBNrA@mail.gmail.com"
type="cite">
<meta http-equiv="Content-Type" content="text/html;
charset=windows-1252">
<div dir="ltr">
<div class="gmail_extra">
<div class="gmail_quote">On Fri, Aug 26, 2016 at 6:28 AM,
Keith Henson <span dir="ltr"><<a moz-do-not-send="true"
href="mailto:hkeithhenson@gmail.com" target="_blank">hkeithhenson@gmail.com</a>></span>
wrote:<br>
<blockquote class="gmail_quote" style="margin:0 0 0
.8ex;border-left:1px #ccc solid;padding-left:1ex">The
trouble is, if you talk about a 20 year replication time,
a lot of<br>
the problems may go away, but so does the motivation.<br>
</blockquote>
<div><br>
</div>
<div>Yes, but this is true of many existing implementations
of nanotech too. <br>
</div>
</div>
</div>
</div>
</blockquote>
<br>
Generally, replication time scales as m^(1/4) of the replicator. So
the time it takes to build an object of mass M out of m-mass
replicators is proportional to m^(1/4) log(M/m). So the scaling is
pretty flat with m, with a max time at an intermediate side: big or
very small replication systems are faster. <br>
<br>
However, general systems are much less efficient than specialized
ones. A general assembler might build copies of itself, but a
specific system churning out its standardized parts will be way more
efficient.<br>
<br>
<pre class="moz-signature" cols="72">--
Dr Anders Sandberg
Future of Humanity Institute
Oxford Martin School
Oxford University</pre>
</body>
</html>