<html><head><meta http-equiv="content-type" content="text/html; charset=utf-8"></head><body dir="auto"><div><span></span></div><div><div>On Thursday, May 25, 2017 11:00 AM spike <<a href="mailto:spike66@att.net">spike66@att.net</a>> wrote:</div><blockquote type="cite"><blockquote type="cite"><span><a href="http://www.nature.com/news/fleeting-phase-of-planet-formation-discovered-1.22039">http://www.nature.com/news/fleeting-phase-of-planet-formation-discovered-1.22039</a></span><br></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><span></span><br></blockquote></blockquote><span></span><br><blockquote type="cite"><blockquote type="cite"><span>I was hoping this wasn't based on simulations but actually detected by observation.</span><br></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><span>Interesting that this backs the accretion theory of lunar formation -- as</span><br></blockquote></blockquote><blockquote type="cite"><blockquote type="cite"><span>against the giant impact theory. > </span><br></blockquote></blockquote><span></span><br><blockquote type="cite"><span>Dan simulations might be better than observation for figuring out how these</span><br></blockquote><blockquote type="cite"><span>things could happen.</span><br></blockquote><span></span><br><span>I'm not so sure about that. I'm not against such simulations, but I think they must be tested against observations. I'm sure you agree. Otherwise, we just end up building models without ever finding out if these models are more than fun with computers. (Nothing wrong with fun with computers, but the point here is to advance our understanding of planetary formation.)</span><br><span></span><br><span>Also, I imagine, with ever more observations of solar systems birthing, we'll eventually capture something going through this phase. (That it lasts less than a million years, of course, lowers the odds of getting lucky before we have lots more observations in the bin.)</span><br><span></span><br><span></span><br><blockquote type="cite"><span>I am pondering if this might explain what we are seeing in Tabby’s star: a</span><br></blockquote><blockquote type="cite"><span>huge synestia formed recently out at a Saturn-ish radius perhaps a few</span><br></blockquote><blockquote type="cite"><span>thousand Saturn-ring radius.</span><br></blockquote><span></span><br><span>Would a synestia show the same light profile? How to independently verify this?</span><br><span></span><br><span></span><br><blockquote type="cite"><span>If this is the right explanation, we won’t see any further dips of Tabby’s</span><br></blockquote><blockquote type="cite"><span>star for the next couple decades. If it is wrong, we will see another dip</span><br></blockquote><blockquote type="cite"><span>in just a couple years from now, and we will again be puzzled at where the</span><br></blockquote><blockquote type="cite"><span>IR signature went.</span><br></blockquote><span></span><br><span>I'm tilting toward something else and more mundane, but I'm not putting any money on my speculations. :)</span><br><span></span><br><div style="line-height: normal;"><span style="line-height: 20px; background-color: rgba(255, 255, 255, 0);">Regards,</span></div><div style="line-height: normal;"><span style="line-height: 20px; background-color: rgba(255, 255, 255, 0);"><br></span></div><div><div style="line-height: normal;"><span style="line-height: 20px; background-color: rgba(255, 255, 255, 0);">Dan</span></div><div style="line-height: normal;"><span style="background-color: rgba(255, 255, 255, 0);"> Sample my Kindle books via:</span></div><div style="line-height: normal;"><font color="#000000" style="background-color: rgba(255, 255, 255, 0);"><a href="http://author.to/DanUst" style="background-color: rgba(255, 255, 255, 0);">http://author.to/DanUst</a></font></div></div></div><div style="line-height: normal;"><br></div></body></html>