<html><head><meta http-equiv="content-type" content="text/html; charset=utf-8"></head><body dir="auto"><div><h1 class="article_title" style="box-sizing: border-box; border: 0px; font-stretch: inherit; line-height: inherit; vertical-align: baseline; margin: 0px 0px 0em; padding: 0px;"><font size="3"><span style="background-color: rgba(255, 255, 255, 0);">Cosmic Magnifying Glasses Find Dark Matter in Small Clumps</span></font></h1></div><div><font size="3"><span style="background-color: rgba(255, 255, 255, 0);"><br></span></font></div><a href="https://www.jpl.nasa.gov/news/news.php?release=2020-005&rn=news.xml&rst=7572">https://www.jpl.nasa.gov/news/news.php?release=2020-005&rn=news.xml&rst=7572</a><br><br><div dir="ltr"><span style="background-color: rgba(255, 255, 255, 0);">Using NASA's <a href="https://www.nasa.gov/mission_pages/hubble/main/index.html" style="box-sizing: border-box; border: 0px; font-stretch: inherit; line-height: inherit; vertical-align: baseline; margin: 0px; padding: 0px; text-decoration: none; -webkit-font-smoothing: antialiased; text-rendering: optimizeLegibility; word-wrap: break-word;">Hubble Space Telescope</a> and a new observing technique, astronomers have found that dark matter forms much smaller clumps than previously known. This result confirms one of the fundamental predictions of the widely accepted "cold dark matter" theory.</span></div><div dir="ltr"><span style="background-color: rgba(255, 255, 255, 0);"><br></span></div><div dir="ltr"><span style="background-color: rgba(255, 255, 255, 0);">The Hubble observation yields new insights into the nature of dark matter and how it behaves. "We made a very compelling observational test for the cold dark matter model and it passes with flying colors," said Tommaso Treu of the University of California, Los Angeles (UCLA), a member of the observing team.</span></div><div dir="ltr"><span style="background-color: rgba(255, 255, 255, 0);"><br></span></div><div dir="ltr"><p style="box-sizing: border-box; border: 0px; font-stretch: inherit; line-height: inherit; vertical-align: baseline; margin: 1em 0px; padding: 0px; word-wrap: break-word;"><span style="background-color: rgba(255, 255, 255, 0);">The team targeted eight powerful and distant cosmic "streetlights," called quasars (regions around active black holes that emit enormous amounts of light). The astronomers measured how the light emitted by oxygen and neon gas orbiting each of the quasars' black holes is warped by the gravity of a massive foreground galaxy, which acts as a magnifying lens.</span></p><p style="box-sizing: border-box; border: 0px; font-stretch: inherit; line-height: inherit; vertical-align: baseline; margin: 1em 0px; padding: 0px; word-wrap: break-word;"><span style="background-color: rgba(255, 255, 255, 0);">Using this method, the team uncovered dark matter clumps along the telescope's line of sight to the quasars, as well as in and around the intervening lensing galaxies. The dark matter concentrations detected by Hubble are 1/10,000th to 1/100,000th times the mass of the Milky Way's dark matter halo. Many of these tiny groupings most likely do not contain even small galaxies, and therefore would have been impossible to detect by the traditional method of looking for embedded stars.</span></p></div></body></html>