<div dir="ltr"><div dir="ltr"><br></div><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">On Mon, May 4, 2020 at 8:31 PM The Avantguardian via extropy-chat <<a href="mailto:extropy-chat@lists.extropy.org" target="_blank">extropy-chat@lists.extropy.org</a>> wrote:</div><div dir="ltr" class="gmail_attr"><br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex">
Leave it to Wolfram to try to brute force a theory of everything. I have been looking over his website but I can't seem to find where he mentions specific figures like the 10^35 parts to an electron. I am a little skeptical of his claims to be honest. To say that the entire universe could arise from a simple recursive rule that adds nodes and edges to a hypergraph sounds a little bit like saying that 42 is the answer to everything. And we certainly can't experimentally probe distances that are smaller relative to a Planck length than the Planck length is to us. With our best supercomputer, we can't even iterate candidate rules 10^35 times within the age of the universe in order to see if we can simulate an electron. His theory is not experimentally testable and is not practical to compute with modern hardware.<br>
---------------------------<br></blockquote><div><br></div><div>### See here:</div><div><br></div><div><span style="font-family:Georgia,"Times New Roman",serif;font-size:16.48px">"One feature of our models is that there should be a “quantum of mass”—a discrete amount that all masses, for example of particles, are multiples of. With our estimate for the elementary length, this quantum of mass would be small, perhaps 10</span><span style="box-sizing:border-box;margin:0px;padding:0px;font-size:0.75em;line-height:0;vertical-align:baseline;font-family:Georgia,"Times New Roman",serif">–30</span><span style="font-family:Georgia,"Times New Roman",serif;font-size:16.48px">, or 10</span><span style="box-sizing:border-box;margin:0px;padding:0px;font-size:0.75em;line-height:0;vertical-align:baseline;font-family:Georgia,"Times New Roman",serif">36</span><span style="font-family:Georgia,"Times New Roman",serif;font-size:16.48px"> times smaller than the mass of the electron."</span></div><div><br></div><div>42 is just a number in Douglas Adams' imagination. Wolfram on the other hand proposes a research program into the mathematics of hypergraphs that so far produced intriguing results, so it's certainly more than just idle musings. It's true that at present there are significant computational obstacles to precisely following a hypergraph's evolution until you reach realms accessible to experiments but that's not a reason to reject the idea. There is structure to the space of rules, as he mentions in his introduction, so who knows, maybe there will be shortcuts. Also, the idea of "oligons" as candidate dark matter could help bring the program closer to being testable.</div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex">
-------------------------------------<br>
<br>
Where do the moving parts come from one?  It seems like he is saying that you can start with platonic bits and get matter particles out of them after an insane number of iterations. I don't see how that is possible by mathematical induction. Or is he positing some sort of ur-particle more fundamental that the standard model of which quarks and electrons are built and that his nodes and edges represent?<br></blockquote><div><br></div><div>### Well, he says the world is made of math, and that would be much more fundamental than the Standard Model. His ur-particle would be a graph, and the passage of time is defined by a simple rule applied to the graph, weaving both space *and* matter out of that ur-particle. Since there is an infinity of graphs and rules and their combinations, there is an infinity of deterministic universes created from such entities, with infinite strands of time issuing from each graph thanks to different rules, and infinite parallel worlds following each time dimension given different starting graphs. That's trivial - but the interesting part is that he is finding structures that have parallels to physics and "naturally" produce some high-level physical concepts even at the basic level he is investigating.</div><div><br></div><div>A big difference from many other physical theories here is that the hypergraphs create both space and matter, rather than having objects (particles) play out against a background of pre-existing space.</div><div> </div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex">
--------------------------------<br>
<br>
I have to admit that Wolfram's theory seems superficially similar to my recent work on what I call "synergistic systems" or systems comprised of simpler components that display emergent properties that the individual parts themselves do not have. I have been mathematically analyzing how the whole can be greater than the sum of the parts as it were. An example application for my theory is deriving a mathematical description of why water is wet or how cells can live while composed of unliving molecules.  The main similarity between our theories is that we both use hypergraphs but his approach is recursive and my approach is more closed-form and holistic. I am trying to explain how complex systems work and not necessarily trying to be "fundamental". For example, my theory assumes quantum mechanics instead of trying to derive it from simpler theory.<br></blockquote><div><br></div><div>### Give him a call!</div><div>--------------------------</div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex">
<br>
His description of time is problematic. It seems to assume a sort of universal time that would violate GR. How do you resolve conflicts between hypergraph elements as to which came first in temporal order and so would be able to have the rule applied to them to generate the other?<br>
<br>
Does F(chicken) = egg or F(egg) = chicken?<br></blockquote><div><br></div><div>### The rule is applied to the parent hypergraphs in all possible ways to generate all possible daughter graphs (but at each step the number of entities created is finite, since we are talking about a finite starting graph and a finite rule). He mentions that some of his hypergraphs replicate GR, he defines spacelike and timelike directions in the graphs, but of course as a non-physicist I can't visualize it in enough detail.</div><div> ---------------------------</div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex">
It is an interesting idea, I just think it gets a little hand wavy about at which step the bit becomes an it. Of course a Platonic modal realist might say that all self-consistent maths correspond to the laws of physics in some universe somewhere but then how did those laws get sorted from the Platonic commons to a universe near you? Also, how does pure determinism simulate quantum randomness? Or does a single simple rule generate ALL possible universes?</blockquote><div><br></div><div>### Well, the anthropic principle would sort us out to the universes that make us possible. Since there is an infinity of conceivable rules, there is an infinity of independent hypergraph-universes created by such rules, thus it takes an infinity of rules to create all possible universes.</div><div><br></div><div>I am a non-physicist and the understanding of quantum randomness eludes me completely but Wolfram does mention that his hypergraphs give rise to entanglement and some other features of quantum physics, like the path integral. Since you are the physicist here - How about you read Wolfram et al. accompanying two 60 page technical articles and give us peer-review?</div><div><br></div><div>Rafal</div></div></div>