<div dir="ltr"><div><span class="gmail_default" style="font-size:large;font-family:arial,helvetica,sans-serif">In an article published yesterday r</span><span style="font-size:large">esearchers </span><span class="gmail_default" style="font-size:large;font-family:arial,helvetica,sans-serif">report that they have </span><span style="font-size:large">tested thousands o</span><span class="gmail_default" style="font-size:large;font-family:arial,helvetica,sans-serif">f random changes in the </span><span class="gmail_default" style="font-size:large;font-family:arial,helvetica,sans-serif"></span><span style="font-size:large">CRISPR </span><span class="gmail_default" style="font-size:large;font-family:arial,helvetica,sans-serif"></span><span style="font-size:large">protein</span><span class="gmail_default" style="font-size:large;font-family:arial,helvetica,sans-serif"> </span><span style="font-size:large">used in gene editing to see</span><span class="gmail_default" style="font-size:large;font-family:arial,helvetica,sans-serif"> if they could find one that produces fewer errors than the naturally occurring one currently used, and they did. They found an enzyme that made 93 times fewer mistakes, and the old one was already pretty good!</span><br></div><div><font size="4"><br></font></div><div><font size="4"><a href="https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3000747">High-fidelity SaCas9 identified by directional screening in human cells</a></font><br></div><div><br></div><div><br></div><div><div class="gmail_default" style="font-family:arial,helvetica,sans-serif"><font size="4">John K Clark</font></div><br></div></div>