<div dir="auto">Press release from Lancaster University:</div><div dir="auto"><div><a href="https://www.lancaster.ac.uk/news/why-there-is-no-speed-limit-in-the-superfluid-universe">https://www.lancaster.ac.uk/news/why-there-is-no-speed-limit-in-the-superfluid-universe</a></div><br></div><div><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">On 2020. Sep 21., Mon at 16:56, John Clark via extropy-chat <<a href="mailto:extropy-chat@lists.extropy.org">extropy-chat@lists.extropy.org</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr"><div class="gmail_default" style="font-family:arial,helvetica,sans-serif"><span style="color:rgb(33,36,56);font-family:Quicksand,sans-serif;font-size:18.75px">Researchers report in Nature Communications that they found when Helium-3 is cooled to 0.</span><span style="color:rgb(33,36,56);font-family:Quicksand,sans-serif;font-size:18.75px">0001K  a wire moving through it feels no resistance even when the wire is moving very rapidly. </span><span style="color:rgb(33,36,56);font-family:Quicksand,sans-serif;font-size:18.75px">Lead author Dr. Samuli Autti said: "<i>Superfluid helium-3 feels like a vacuum to a rod moving through it, although it is a relatively dense liquid. There is no resistance, none at all. I find this very intriguing.</i>"</span></div><div class="gmail_default" style="font-family:arial,helvetica,sans-serif"><span style="color:rgb(33,36,56);font-family:Quicksand,sans-serif;font-size:18.75px"><br></span></div><font size="4">The article says <span class="gmail_default" style="font-family:arial,helvetica,sans-serif">this discovery c</span>ould aid in "<i>studies of Majorana fermions aimed at producing components of, say, a quantum computer</i>". Majorana fermions <span class="gmail_default" style="font-family:arial,helvetica,sans-serif">w</span>ould be far less susceptible to quantum decoherence <span class="gmail_default" style="font-family:arial,helvetica,sans-serif">than</span> <span class="gmail_default" style="font-family:arial,helvetica,sans-serif">normal</span> particles <span class="gmail_default" style="font-family:arial,helvetica,sans-serif">a</span>nd <span class="gmail_default" style="font-family:arial,helvetica,sans-serif">thus</span> allow the construction of <span class="gmail_default" style="font-family:arial,helvetica,sans-serif">T</span>opological Quantum <span class="gmail_default" style="font-family:arial,helvetica,sans-serif">C</span>omputers which<span class="gmail_default" style="font-family:arial,helvetica,sans-serif">,</span> <span class="gmail_default" style="font-family:arial,helvetica,sans-serif"></span>because of their much lower <span class="gmail_default" style="font-family:arial,helvetica,sans-serif">error</span> rate, could be scaled up to arbitrary size.<span class="gmail_default" style="font-family:arial,helvetica,sans-serif"></span></font><div><div><br></div><div><div><font size="4"><a href="https://www.nature.com/articles/s41467-020-18499-1" target="_blank">dissipation due to bound fermions in the zero-temperature limit</a></font></div><div><br></div><div><div class="gmail_default" style="font-family:arial,helvetica,sans-serif"><font size="4">John K Clark</font></div></div><div><br></div></div></div></div><br><br>_______________________________________________<br><br>extropy-chat mailing list<br><br><a href="mailto:extropy-chat@lists.extropy.org" target="_blank">extropy-chat@lists.extropy.org</a><br><br><a href="http://lists.extropy.org/mailman/listinfo.cgi/extropy-chat" rel="noreferrer" target="_blank">http://lists.extropy.org/mailman/listinfo.cgi/extropy-chat</a><br><br></blockquote></div></div>