<div dir="ltr"><div>Hi Giulio,</div><div><br></div><div>Thank you for raising so many profound questions!</div><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">On Wed, Nov 3, 2021 at 5:10 AM Giulio Prisco via extropy-chat <<a href="mailto:extropy-chat@lists.extropy.org">extropy-chat@lists.extropy.org</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex">Gödel and physical reality. What are the implications of Gödel's<br>
theorem for fundamental science and metaphysics?<br>
<br></blockquote><div><br></div><div>I think there are deep connections between Gödel's theorem and the question of why anything exists. I write about some of the connections and implications in this article: </div><div><a href="https://alwaysasking.com/why-does-anything-exist/#20th_Century_Mathematics">https://alwaysasking.com/why-does-anything-exist/#20th_Century_Mathematics</a><br></div><div><br></div><div>In summary, Gödel's result implies an independence of mathematical truth from any human theory of that truth, and I would argue, even makes mathematical truth independent of the physical universe.</div><div><br></div><div>Then, there are a number of constructive arguments that show how the existence of mathematical truth leads to the existence of entities who believe and consider themselves to be parts of physically existing worlds. In effect, all computational histories (of all programs) are a small part of what exists in the set of all mathematical truth. This was discovered in 1970 as part of the MRDP-Theorem which solved Hilbert's 10th problem. There exists a single Diophantine equation, whose solutions embody all possible programs (all computable sets). See: <a href="https://alwaysasking.com/why-does-anything-exist/#Universal_Equations">https://alwaysasking.com/why-does-anything-exist/#Universal_Equations</a></div><div> </div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex">
What does Gödel’s theorem say about physical reality? </blockquote><div><br></div><div><br></div><div>If you define physical reality as the observable universe, whose information content is large but finite (say 10^120 bits), then our universe lacks the computational and memory resources to even list all the properties of the number "3". In this sense, the number 3 is a larger, and more complex object than our physical universe, for there are an infinite number of true statements concerning the number 3, not all of which can be enumerated in our physical universe. The finiteness of our universe also means there are axiomatic systems which contain more axioms than there are atoms in our universe, so we could never conceive of them.<br></div><div> </div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex">Does Gödel’s<br>
theorem imply that no finite mathematical model can capture physical<br>
reality?</blockquote><div><br></div><div>Since our physical reality allows the construction of computers, and since the behavior of computers cannot be determined in general (you will always need ever-more expensive mathematical theories to prove things about the operations of certain computers), then in a very real sense, Gödel’s theorem (and particularly in conjunction with the unsolvability of Hilbert's 10th problem (undecidability)), it means certain physical problems are not decidable either.</div><div><br></div><div>For example, consider if I have a computer searching for counterexamples to the <a href="https://en.wikipedia.org/wiki/Goldbach%27s_conjecture">Goldbach conjecture</a>, after which it will turn on a light switch, because the computer is a physical system, I could ask the physical question of: "<b>how long, if ever, will it take for the light to turn on?</b>" And yet, it very well could be that we cannot determine the answer to this problem, without developing a new more powerful mathematical system that enables us to prove that there are no counterexamples to the Goldbach conjecture. So physics and our physical theories, because they are general enough to allow us to build computers, are subject to the limits of undecidability, and ultimately are limited by the power of our mathematical systems.</div><div> </div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"> Does the nondeterminism found in quantum and chaos physics -<br>
it’s impossible to predict (prove) the future from the present and the<br>
laws of physics - have something to do with Gödel’s incompleteness?<br>
Many scientists e.g. Stanley Jaki, Freeman Dyson, and recently Stephen<br>
Hawking ("According to the positivist philosophy of science, a<br>
physical theory is a mathematical model. So if there are mathematical<br>
results that can not be proved, there are physical problems that can<br>
not be predicted…") have formulated this intuition. But I'm not aware<br>
of any proof (or very strong semi-rigorous argument) that causal<br>
openness in physical reality follows from Gödel's theorems (or the<br>
related results of Turing, Chaitin etc.). Can anyone give me<br>
links/ideas?<br></blockquote><div><br></div><div>There are a number of recent results that suggest the uncertainty we observe in physics could be a direct manifestation/consequence of our existence within an infinite ensemble of all possible computational histories. I quote and cite some of these theories and theorists here:</div><div><a href="https://alwaysasking.com/why-does-anything-exist/#Why_Quantum_Mechanics">https://alwaysasking.com/why-does-anything-exist/#Why_Quantum_Mechanics</a><br></div><div><br></div><div>If you have any questions about any of these ideas, I would be happy to follow up in more depth, but the links from there should provide a good starting point.</div><div><br></div><div>Jason</div></div></div>