<div dir="ltr"><div dir="ltr"><div class="gmail_default" style="font-family:arial,helvetica,sans-serif"><br></div></div><div dir="ltr"><div dir="ltr"><div style="font-family:arial,helvetica,sans-serif"><span style="font-family:Arial,Helvetica,sans-serif">On Sat, Jan 24, 2026 at 8:57 AM Jason Resch via extropy-chat <</span><a href="mailto:extropy-chat@lists.extropy.org" target="_blank" style="font-family:Arial,Helvetica,sans-serif">extropy-chat@lists.extropy.org</a><span style="font-family:Arial,Helvetica,sans-serif">> wrote:</span></div></div><div class="gmail_quote"><div dir="ltr" class="gmail_attr"><br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div dir="auto"><div dir="auto"><font size="4"><span class="gmail_default" style="font-family:arial,helvetica,sans-serif">> </span>More computation doesn't require more energy, this is a common misconception.</font></div></div></blockquote><div><br></div><font face="tahoma, sans-serif" size="4"><b><span class="gmail_default" style="font-family:arial,helvetica,sans-serif">T</span><span class="gmail_default" style="">hat's no misconception,</span> assuming you don't have <span class="gmail_default" style="">infinite</span> memory <span class="gmail_default" style="">or </span>infinite time available, and by infinite I mean infinite and not just astronomically large. If your memory is finite then<span class="gmail_default" style=""> a</span>fter you finish a calculation you're going to need to erase all the scratchpad stuff in memory<span class="gmail_default" style=""> </span>you use to produce the answer and just keep the answer, <span class="gmail_default" style="">but</span> that takes energy. Landauer's principle allows us to calculate the fundamental lower bound o<span class="gmail_default" style="">f</span> the energy needed to erase one bit of information, it is <u style="">k</u><span class="gmail_default" style="text-decoration-line:underline">*</span><u style="">T</u><span class="gmail_default" style=""><u>*ln2</u>, (</span>K is Boltzman's constant<span class="gmail_default" style="">,</span> T is the temperature of the computer<span class="gmail_default" style=""> </span>in kelvin<span class="gmail_default" style="">, and ln2 is the natural logarithm of 2). </span></b></font><b style=""><font face="tahoma, sans-serif" style="" size="4">At room temperature<span class="gmail_default" style=""></span> it takes <span class="gmail_default" style="">at least</span> 2.9 x 10^-21 joules of energy to erase<span class="gmail_default" style=""> one</span> bit<span class="gmail_default" style=""> of information</span>.</font><span class="gmail_default" style=""><font face="tahoma, sans-serif" style=""><font size="4"> Of course if you had infinite memory at your disposal then you wouldn't need to erase anything, but unfortunately you don't. </font></font></span></b></div><div class="gmail_quote"><font size="4"><b><br></b></font></div><font size="4" face="tahoma, sans-serif"><b>There is one way around this, Landauer’s bound only applies to information erasure not to logic steps, so<span class="gmail_default" style=""> </span>if your computer is <span class="gmail_default" style="">made</span> in a way that allows <span class="gmail_default" style="">for </span>reversible computing (everyday computers are not) then once you finish a computation you could keep the answer <span class="gmail_default" style="">and then</span> run the computer backwards to get <span class="gmail_default" style="">back </span>to the starting state, so no information is erased.<span class="gmail_default" style=""> If you do that then, although you could never get to zero, you could perform a calculation using an arbitrarily small amount of energy. But the trouble is thermodynamics tells us the process needs to be as close to adiabatic as possible, so the less energy you use the slower your computation. </span><span class="gmail_default" style="">Of course if you had infinite time at your disposal it wouldn't matter how slow the computation is, but unfortunately you don't.</span></b></font></div><div dir="ltr"><font face="tahoma, sans-serif" size="4"><b><br></b></font></div><div dir="ltr"><font face="tahoma, sans-serif" size="4"><b><span class="gmail_default" style="font-family:arial,helvetica,sans-serif">John K Clark</span></b></font></div><div dir="ltr"><font size="4"><b style=""><font face="arial, helvetica, sans-serif"><br></font></b></font><div class="gmail_quote"><div><br></div><div><br></div><div><br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div dir="auto"><div dir="auto"><br></div><div dir="auto"><br></div><div dir="auto"><div class="gmail_quote"><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div dir="ltr"><div><div class="gmail_quote" style="font-family:Arial,Helvetica,sans-serif"><div> </div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><font face="tahoma, sans-serif" size="4"><i> <span class="gmail_default" style="font-family:arial,helvetica,sans-serif">> </span><span class="gmail_default">I </span>appreciate the 'von Neumann probe' argument, but not all civilisations are going to go that route</i></font></blockquote><div><br></div><div><font size="4"><font face="tahoma, sans-serif"><b>It would only take one. And I'm not talking about one civilization, I'm talking about one individual in a civilization. It is simply not </b></font><b style="font-family:tahoma,sans-serif">t<span class="gmail_default" style="font-family:arial,helvetica,sans-serif">enable </span>to maintain that precisely 100% of the technologically savvy individuals in the observable universe have decided not to make a <span class="gmail_default">V</span>on <span class="gmail_default">N</span>eumann <span class="gmail_default">P</span>robe.<span class="gmail_default"> I think </span>William of Ockham<span class="gmail_default"> would agree with me that the best explanation of the Fermi Paradox is simply we are the first. And as I keep saying, somebody has to be. </span></b></font></div></div><div class="gmail_quote" style="font-family:Arial,Helvetica,sans-serif"><font face="arial, helvetica, sans-serif"><br></font></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><font size="4" face="georgia, serif"><i>> I have a hunch that we tend to vastly underestimate the difficulty of interstellar travel.</i></font></blockquote><div style="font-family:Arial,Helvetica,sans-serif"><br></div><font face="tahoma, sans-serif" size="4"><b>You don't need interstellar travel to make a Dyson sphere/swarm, and something like that should be very noticeable, but we have noticed nothing. And any technological civilization worth its salt should be able to get a Von Neumann Probe moving at 1% the speed of light because its mass would be very small, and so it could get from one side of the galaxy to the other in just 10 million years, a blink of the eye cosmically speaking. But just how much would a Von Neumann Probe weigh? </b></font></div><div><font face="tahoma, sans-serif" size="4"><b><br></b></font></div><font size="4" face="tahoma, sans-serif"><b>Estimates vary, Freeman Dyson thought it would be about a kilogram but George Church and Zaza Osmanov think that's much too high, they think with advanced Nanotechnology one Von Neumann Probe could be about the size of a bacteria and, depending on various engineering considerations, weigh between a trillionth of a gram (10^-12) and a thousandth (10^-3) of a gram; and, if it had access to raw materials and light energy from a star, it could make a copy of itself in about a year. Then after 79 years there would be an Avogadro's number of Von Neumann Probes, 6.02*10^23. And one year after that it would be obvious to a blind man in a fog bank that not all the technologically knowledgeable<span class="gmail_default"> </span>minds in the galaxy were on the Earth. But we have seen nothing like that. I think I know why. <br></b></font><div><div><div><div class="gmail_quote"></div></div></div><div><font size="4" face="tahoma, sans-serif"><b><span class="gmail_default"><br></span></b></font></div><div><font size="4" face="tahoma, sans-serif"><b><span class="gmail_default">John K Clark</span></b></font></div></div></div>
_</blockquote></div></div></div>
</blockquote></div></div>
</div>