<div dir="auto"><div><br><br><div class="gmail_quote gmail_quote_container"><div dir="ltr" class="gmail_attr">On Mon, Jan 26, 2026, 6:40 AM John Clark <<a href="mailto:johnkclark@gmail.com">johnkclark@gmail.com</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr"><div dir="ltr"><div class="gmail_default" style="font-family:arial,helvetica,sans-serif"><span style="font-family:Arial,Helvetica,sans-serif">On Sun, Jan 25, 2026 at 7:21 PM Jason Resch via extropy-chat <<a href="mailto:extropy-chat@lists.extropy.org" target="_blank" rel="noreferrer">extropy-chat@lists.extropy.org</a>> wrote:</span></div></div><div class="gmail_quote"><div dir="ltr" class="gmail_attr"><br></div><div dir="ltr" class="gmail_attr"><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div dir="ltr"><div class="gmail_quote"><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><font size="4" face="tahoma, sans-serif"><b><span class="gmail_default" style="font-family:arial,helvetica,sans-serif">>> </span>If you try to go beyond Bremermann's Limit the energy/mass density would become so high that your computer would collapse into a Black Hole, and then information could go in but it couldn't get out so the machine wouldn't be of much use. </b></font></blockquote></div></div></blockquote><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><br></blockquote><span><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><i><font size="4" face="georgia, serif"><span class="gmail_default" style="font-family:arial,helvetica,sans-serif">> </span>I think here you are thinking of the Bekenstein bound.</font></i></blockquote><div><br></div><font size="4" face="tahoma, sans-serif"><b>No. Bremermann’s Limit and Bekenstein’s Bound are talking about different things,</b></font></span></div></div></div></blockquote></div></div><div dir="auto"><br></div><div dir="auto">I know.</div><div dir="auto"><br></div><div dir="auto"></div><div dir="auto"><div class="gmail_quote gmail_quote_container"><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr"><div class="gmail_quote"><div dir="ltr" class="gmail_attr"><span><font size="4" face="tahoma, sans-serif"><b> although the end result of both is the same.<br></b></font></span></div></div></div></blockquote></div></div><div dir="auto"><br></div><div dir="auto">The former defined a speed limit given the mass of a computer.</div><div dir="auto"><br></div><div dir="auto">The latter gives a memory limit given the mass and volume of a computer.</div><div dir="auto"><br></div><div dir="auto"><div class="gmail_quote gmail_quote_container"><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr"><div class="gmail_quote"><div dir="ltr" class="gmail_attr"><span><font size="4" face="tahoma, sans-serif"><b><br>Bremermann’s Limit tells you how <span class="gmail_default">many bits</span><span class="gmail_default"> </span><span class="gmail_default">per second </span>a given mass<span class="gmail_default"> of matter </span>can process information before it collapses into a <span class="gmail_default" style="font-family:arial,helvetica,sans-serif">B</span>lack <span class="gmail_default" style="font-family:arial,helvetica,sans-serif">H</span>ole<span class="gmail_default">. The formula is:</span></b></font></span></div><div dir="ltr" class="gmail_attr"><span><font size="4" face="tahoma, sans-serif"><span class="gmail_default" style="font-weight:bold">C^2/h = 1.35*10^50 bits per second per kilogram. </span></font></span></div></div></div></blockquote></div></div><div dir="auto"><br></div><div dir="auto">I don't see what Bremmermann's limit has to do with black holes. More massive black holes have proportionally more computing speed. The limit does not end at black holes.</div><div dir="auto"><br></div><div dir="auto">Black holes only serve to limit the maximum data density, which is why I suggested you might thinking of Bekenstein's bound when you mentioned black holes, as there black holes are relevant to preventing further progress in data storage per unit of volume.</div><div dir="auto"><br></div><div dir="auto">However black holes are not relevant to preventing growth in faster computing speed as it relates to Bekenstein's bound.</div><div dir="auto"><br></div><div dir="auto">Jason </div><div dir="auto"></div><div dir="auto"><br></div><div dir="auto"><div class="gmail_quote gmail_quote_container"><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr"><div class="gmail_quote"><div dir="ltr" class="gmail_attr"><span><font size="4" face="tahoma, sans-serif"><br><br><b>Bekenstein’s Bound tells you how much Shannon<span class="gmail_default"> </span>information<span class="gmail_default"> (a.k.a. entropy)</span> you can fit into a sphere that has the surface area of<span class="gmail_default"> 4πR^2</span></b></font></span><font size="4" face="tahoma, sans-serif"><b> before it collapses into a Black Hole.<span class="gmail_default"> The formula is: </span></b></font></div><div dir="ltr" class="gmail_attr"><span><font size="4" face="tahoma, sans-serif"><b><span class="gmail_default" style="font-family:arial,helvetica,sans-serif"><br></span></b></font></span></div><div dir="ltr" class="gmail_attr"><div style="line-height:1.15;margin-top:0px"><div class="gmail_default"><font face="tahoma, sans-serif" size="4"><b>I= (2*π*R*E)/[(h/2π)*C*ln2]</b></font></div><div class="gmail_default"><font face="tahoma, sans-serif" size="4"><b><br></b></font></div><div class="gmail_default"><font face="tahoma, sans-serif" size="4"><b>It's interesting that the maximum amount of information you can fit into a sphere is proportional to the sphere's area, not to it's volume as you might expect. <br></b></font></div><div class="gmail_default"><font face="tahoma, sans-serif" size="4"><b><br></b></font></div><div class="gmail_default"><font face="tahoma, sans-serif" size="4"><b>John K Clark</b></font></div><br></div></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div dir="ltr"><div dir="ltr"><br></div></div>
</blockquote></div></div>
</blockquote></div></div></div>