<div dir="auto"><div><br><br><div class="gmail_quote gmail_quote_container"><div dir="ltr" class="gmail_attr">On Thu, Feb 19, 2026, 7:13 AM John Clark <<a href="mailto:johnkclark@gmail.com">johnkclark@gmail.com</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr"><div dir="ltr"><div class="gmail_default" style="font-family:arial,helvetica,sans-serif"><span style="font-family:Arial,Helvetica,sans-serif">On Mon, Feb 16, 2026 at 5:03 PM Jason Resch via extropy-chat <<a href="mailto:extropy-chat@lists.extropy.org" target="_blank" rel="noreferrer">extropy-chat@lists.extropy.org</a>> wrote:</span></div></div><div class="gmail_quote"><div dir="ltr" class="gmail_attr"><br></div><div dir="ltr" class="gmail_attr"><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><font size="4" face="georgia, serif"><i><span class="gmail_default" style="font-family:arial,helvetica,sans-serif">> </span>When Godel (through his theorems) realized that mathematical truths cannot be a human invention (since mathematical truth transcends any human created axiomatic system), he came to the conclusion that objects in mathematics must have some kind of objective or Platonic existence, as they could not be our own creations.</i></font></blockquote></div></div></div></blockquote></div></div><div dir="auto"><br></div><div dir="auto">Here is the source I am basing my statement on:</div><div dir="auto"><br></div><div dir="auto">"[The existence of] absolutely undecidable mathematical propositions, seems to disprove the view that mathematics is only our own creation; for the creator necessarily knows all properties of his creatures, because they can’t have any others except those he has given to them. So this alternative seems to imply that mathematical objects and facts (or at least something in them) exist objectively and independently of our mental acts and decisions, that is to say, [it seems to imply] some form or other of Platonism or ‘realism’ as to the mathematical objects."</div><div dir="auto"><br></div><div dir="auto">Kurt Gödel in “Some basic theorems on the foundations of mathematics and their implications p. 311″ (1951)</div><div dir="auto"><a href="https://partiallyexaminedlife.com/wp-content/uploads/Godel-Basic-Theorems-and-Their-Implications-1.pdf">https://partiallyexaminedlife.com/wp-content/uploads/Godel-Basic-Theorems-and-Their-Implications-1.pdf</a></div><div dir="auto"><br></div><div dir="auto"><br></div><div dir="auto"><br></div><div dir="auto"><div class="gmail_quote gmail_quote_container"><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr"><div class="gmail_quote"><div dir="ltr" class="gmail_attr"><div><br></div><div class="gmail_default"><font size="4" face="tahoma, sans-serif"></font><font size="4" face="tahoma, sans-serif"><b>Godel discovered that truth is a bigger category than provability, but he didn't think that meant some things were unknowable because he didn't believe the human mind was trapped in just one single logical system, he thought we could jump out of one system and climb onto an infinite ladder of more comprehensive systems.</b></font></div></div></div></div></blockquote></div></div><div dir="auto"><br></div><div dir="auto">Yeah we proceed in developing mathematical theories just as we develop physical theories (empirically).</div><div dir="auto"></div><div dir="auto"><br></div><div dir="auto"><div class="gmail_quote gmail_quote_container"><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr"><div class="gmail_quote"><div dir="ltr" class="gmail_attr"><div class="gmail_default"><font size="4" face="tahoma, sans-serif"><b> The trouble is no logical system powerful enough to perform arithmetic can prove its own consistency; so if we keep climbing that infinite ladder as Godel suggested then there will come a time when we "prove" something and thus be absolutely positively 100% certain it is true, and still be dead wrong.</b></font></div></div></div></div></blockquote></div></div><div dir="auto"><br></div><div dir="auto">Just as when we use a false physical theory to make a prediction, it will be wrong.</div><div dir="auto"><br></div><div dir="auto">But noticing something is wrong gives us the impetus to look for a better theory, just as the collapse of early set theories launched Hilbert's program, and the development of ZFC. (Which may still be wrong, and even if not, it will be incomplete, but no one has found a fetal flaw yet).</div><div dir="auto"><br></div><div dir="auto"><div class="gmail_quote gmail_quote_container"><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr"><div class="gmail_quote"><div dir="ltr" class="gmail_attr"><div class="gmail_default"><font size="4" face="tahoma, sans-serif"><b>  And according to the "principle of explosion"  if a logical system contains just one single contradiction then you can prove anything, you can prove that both X and not X are true, and thus the entire system becomes useless.</b></font></div></div></div></div></blockquote></div></div><div dir="auto"><br></div><div dir="auto">Right.</div><div dir="auto"><br></div><div dir="auto">Jason </div><div dir="auto"><br></div><div dir="auto"><div class="gmail_quote gmail_quote_container"><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr"><div class="gmail_quote"><div dir="ltr" class="gmail_attr"><div class="gmail_default"><font size="4" face="tahoma, sans-serif"><b> <br><br>John K Clark</b></font></div></div><div dir="ltr" class="gmail_attr"><br></div><div dir="ltr" class="gmail_attr"><br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div dir="auto"><div dir="auto"><br></div></div>
</blockquote></div></div>
</blockquote></div></div></div>