<HTML xmlns:o = "urn:schemas-microsoft-com:office:office"><HEAD>
<META charset=UTF-8 http-equiv=Content-Type content="text/html; charset=UTF-8">
<META content="MSHTML 6.00.2900.2523" name=GENERATOR></HEAD>
<BODY style="FONT-SIZE: 12pt; FONT-FAMILY: Arial; BACKGROUND-COLOR: #ffffff">
<DIV>
<DIV>
<DIV><FONT lang=0 face=Arial size=2 FAMILY="SANSSERIF" PTSIZE="10">
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>In a message dated 11/24/2004 9:31:36 AM Eastern Standard Time, shovland@mindspring.com writes:<o:p></o:p></FONT></SPAN></P>
<DIV style="BORDER-RIGHT: medium none; PADDING-RIGHT: 0in; BORDER-TOP: medium none; PADDING-LEFT: 2pt; PADDING-BOTTOM: 0in; BORDER-LEFT: blue 0.75pt solid; PADDING-TOP: 0in; BORDER-BOTTOM: medium none">
<P class=MsoNormal style="BORDER-RIGHT: medium none; PADDING-RIGHT: 0in; BORDER-TOP: medium none; PADDING-LEFT: 0in; PADDING-BOTTOM: 0in; MARGIN: 0in 0.5in 0pt 2pt; BORDER-LEFT: medium none; PADDING-TOP: 0in; BORDER-BOTTOM: medium none; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; mso-border-left-alt: solid blue .75pt; mso-padding-alt: 0in 0in 0in 2.0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>It could be that the accretion of microscopic changes <BR>in the genes without external implementation does in <BR>fact represent a period of testing the changes to see <BR>if they are appropriate. '<BR><BR>Software enhancements are done this way. We get<BR>feedback from users of the existing version, we build<BR>their perceptions into the system, we test it, and<BR>eventually we go live.<o:p></o:p></FONT></SPAN></P></DIV>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>the whole concept of natural selection gets very iffy if something like this is true. A genetic suite can extend the skin of a small mammal, can give the mammal wings, and can turn a tree-climbing mammal into a bat.<SPAN style="mso-spacerun: yes"> </SPAN>But if that genetic suite can only test its viability to survive in the team of a genome and in the environment of a nucleus, if the gene suite remains hidden--or cryptic, to use the term applied by researchers on this topic, how can it test the viability of its product—the skin flaps connecting front limbs to hind limbs that are wings?<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3> <o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>How can that suite of genes be "certain" that it will turn out a malformation of skin that's aerodynamically sound? How can it be sure it will turn out a malformation that will serve any useful purpose, much less one that gives rodents the ability can fly an edge?<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3> <o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>How, for that matter, does a suite of genes for a body segment of an insect "learn" how to produce a head if it shows up in one place, a thorax if the gene suite shows up in another, and an abdomen if it shows up third in line?<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3> <o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>How could gene suites possibly learn to produce these things without trial and error, without testing, and without practice?<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3> <o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Or, to put it in Stephen Jay Gould's terms, if Darwin's gradualism is right, why do we not see a plethora of "hopeful monsters"--random experiments that don't work out?<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3> <o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Is it possible that when animals—including humans—are exposed to stress or to opportunity, gene suites that have never been tried out before suddenly appear, we have a flood of hopeful monsters, and those that are able to find or to invent a new way of making a living, a new niche, become fruitful and multiply?<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3> <o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>If so, do we have any evidence for this among multicellular creatures?<SPAN style="mso-spacerun: yes"> </SPAN>We DO have evidence of this sort of body-plasticity among bacteria.<SPAN style="mso-spacerun: yes"> </SPAN>When bacteria are exposed to stress they become more open to new genetic inserts from phages and from bacterial sex.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3> <o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>In the ancient days when John Skoyles was among us, he pointed to research on heat-shock genes demonstrating that there are gene police that keep the genome rigidly in order under normal circumstances, but that loosen their grip when life gets tough and open the genome to new solutions to old problems, including solutions that turn old problems into new forms of food.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3> <o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>But is there plasticity of this sort in the bodies of multicellular organisms?<SPAN style="mso-spacerun: yes"> </SPAN>There’s some that comes from shifting the amount of time an embryo stays in the womb.<SPAN style="mso-spacerun: yes"> </SPAN>Eject your infant when it’s still highly plastic and you get neoteny, you get a lot of extra wiggle room.<SPAN style="mso-spacerun: yes"> </SPAN>And the brain is extremely plastic…at least in humans.<SPAN style="mso-spacerun: yes"> </SPAN>But how far can bodies stretch and bend without trial and error?<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3> <o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>The two papers that relate to this issue are Eshel’s on “Meaning-Based Natural Intelligence” and Greg’s on “When Genes Go Walkabout”, so I’ll append them below.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3> <o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Onward—Howard<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3> <o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>________<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>WHEN GENES GO WALKABOUT<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3> <o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>By Greg Bear<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3> <o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3> <o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>I’m pleased and honored to be asked to appear before the American Philosophical Society, and especially in such august company. Honored... and more than a little nervous! I am not, after all, a scientist, but a writer of fiction--and not just of fiction, but of science fiction. That means humility is not my strong suit. Science fiction writers like to be provocative. That’s our role. What we write is far from authoritative, or final, but science fiction works best when it stimulates debate.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>I am an interested amateur, an English major with no degrees in science. And I am living proof that you don’t have to be a scientist to enjoy deep exploration of science. So here we go--a personal view.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>A revolution is under way in how we think about the biggest issues in biology--genetics and evolution. The two are closely tied, and viruses--long regarded solely as agents of disease--seem to play a major role.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>For decades now, I’ve been skeptical about aspects of the standard theory of evolution, the neo-Darwinian Modern Synthesis. But without any useful alternative--and since I’m a writer, and not a scientist, and so my credentials are suspect--I have pretty much kept out of the debate. Nevertheless, I have lots of time to read--my writing gives me both the responsibility and the freedom to do that, to research thoroughly and get my facts straight. And over ten years ago, I began to realize that many scientists were discovering key missing pieces of the evolutionary puzzle. <o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Darwin had left open the problem of what initiated variation in species. Later scientists had closed that door and locked it. It was time to open the door again.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Collecting facts from many sources--including papers and texts by the excellent scientists speaking here today--I tried to assemble the outline of a modern appendix to Darwin, using ideas derived from disciplines not available in Darwin’s time: theories of networks, software design, information transfer and knowledge, and social communication--lots of communication. <o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>My primary inspiration and model was variation in bacteria. Bacteria initiate mutations in individuals and even in populations through gene transfer, the swapping of DNA by plasmids and viruses. <o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Another inspiration was the hypothesis of punctuated equilibrium, popularized by Stephen Jay Gould and Niles Eldredge. In the fossil record--and for that matter, in everyday life--what is commonly observed are long periods of evolutionary stability, or equilibrium, punctuated by sudden change over a short span of time, at least geologically speaking--ten thousand years or less. And the changes seem to occur across populations.<SPAN style="mso-spacerun: yes"> </SPAN><o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Gradualism--the slow and steady accumulation of defining mutations, a cornerstone of the modern synthesis--does not easily accommodate long periods of apparent stability, much less<SPAN style="mso-spacerun: yes"> </SPAN>rapid change in entire populations. If punctuated equilibrium is a real phenomenon, then it means that evolutionary change can be put on hold. How is that done? How is the alleged steady flow of mutation somehow delayed, only to be released all at once? <o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>I was fascinated by the possibility that potential evolutionary change could be stored up. Where would it be kept? Is there a kind of genetic library where hypothetical change is processed, waiting for the right moment to be expressed? Does this imply not only storage, but a kind of sorting, a critical editing function within our DNA, perhaps based on some unknown genetic syntax and morphology? <o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>If so, then what triggers the change? <o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Most often, it appears that the trigger is either environmental challenge or opportunity. Niches go away, new niches open up. Food and energy becomes scarce. New sources of food and energy become available. Lacking challenge or change, evolution tends to go to sleep--perhaps to dream, and sometimes to rumple the covers, but not to get out of bed and go for coffee.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Because bacteria live through many generations in a very short period of time, their periods of apparent stability are not millennia, but years or months or even days.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>The most familiar mutational phenomenon in bacteria--resistance to antibiotics--can happen pretty quickly. Bacteria frequently exchange plasmids that carry genes that counteract the effects of antibiotics. Bacteria can also absorb and incorporate raw fragments of DNA and RNA, not packaged in nice little chromosomes. The members of the population not only sample the environment, but exchange formulas, much as our grandmothers might swap recipes for soup and bread and cookies. How these recipes initially evolve can in many instances be attributed to random mutation--or to the fortuitous churning of gene fragments--acting through the filter of natural selection.<SPAN style="mso-spacerun: yes"> </SPAN>Bacteria do roll the dice, but recent research indicates that they roll the dice more often when they’re under stress--that is, when mutations will be advantageous. Interestingly, they also appear to roll the dice predominantly in those genetic regions where mutation will do them the most good! Bacteria, it seems, have learned how to change more efficiently.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Once these bacterial capabilities evolve, they spread rapidly. However, they spread only when a need arises--again, natural selection. No advantage, no proliferation. No challenge, no change.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>But gene swapping is crucial. And it appears that bacteria accept these recipes not just through random action, but through a complicated process of decision-making. Bacterial populations are learning and sharing. In short, bacteria are capable of metaevolution--self-directed change in response to environmental challenges. <o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Because of extensive gene transfer, establishing a strict evolutionary tree of bacterial types has become difficult, though likely not impossible. We’re just going to have to be clever, like detectives solving crimes in a town where everyone is a thief. <o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Perhaps the most intriguing method of gene swapping in bacteria is the bacteriophage, or bacterial virus. Bacteriophages--phages for short--can either kill large numbers of host bacteria, reproducing rapidly, or lie dormant in the bacterial chromosome until the time is right for expression and release. Lytic phages almost invariably kill their hosts. But these latter types--known as lysogenic phages--can actually transport useful genes between hosts, and not just randomly, but in a targeted fashion. In fact, bacterial pathogens frequently rely on lysogenic phages to spread toxin genes throughout a population. Cholera populations become pathogenic in this fashion. In outbreaks of E. coli that cause illness in humans, lysogenic phages have transported genes from shigella--a related bacterial type--conferring the ability to produce shiga toxin, a potent poison. <o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Thus, what at first glance looks like a disease--viral infection--is also an essential method of communication--FedEx for genes.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>When genes go walkabout, bacteria can adapt quickly to new opportunities. In the case of bacterial pathogens, they can rapidly exploit a potential marketplace of naïve hosts. In a way, decisions are made, quorums are reached, genes are swapped, and behaviors change.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>What lies behind the transfer of bacterial genes? Again, environmental challenges and opportunities. While some gene exchange may be random, bacterial populations overall appear to practice functions similar to education, regimentation, and even the execution of uncooperative members. When forming bacterial colonies, many bacteria--often of different types--group together and exchange genes and chemical signals to produce an organized response to environmental change. Often this response is the creation of a biofilm, a slimy polysaccharide construct complete with structured habitats, fluid pathways, and barriers that discourage predators. Biofilms can even provide added protection against antibiotics. Bacteria that do not go along with this regimen can be forced to die--either by being compelled to commit suicide or by being subjected to other destructive measures. If you don’t get with the picture, you break down and become nutrients for those bacterial brothers who do, thus focusing and strengthening the colony.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>A number of bacteriologists have embraced the notion that bacteria can behave like multicellular organisms. Bacteria cooperate for mutual advantage. Today, in the dentist’s office, what used to be called plaque is now commonly referred to as a biofilm. They’re the same thing--bacterial cities built on your teeth.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>In 1996, I proposed to my publishers a novel about the coming changes in biology and evolutionary theory. The novel would describe an evolutionary event happening in real-time--the formation of a new sub-species of human being. What I needed, I thought, was some analog to what happens in bacteria. And so I would have to invent ancient viruses lying dormant in our genome, suddenly reactivated to ferry genes and genetic instructions between humans. <o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>To my surprise, I quickly discovered I did not have to invent anything. Human endogenous retroviruses are real, and many of them have been in our DNA for tens of millions of years. Even more interesting, some have a close relationship to the virus that causes AIDS, HIV. <o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>The acronym HERV--human endogenous retrovirus--became my mantra. In 1997 and 1998, I searched the literature (and the internet) for more articles about these ancient curiosities--and located a few pieces here and there, occasional mention in monographs, longer discussions in a few very specialized texts. I was especially appreciative of the treatment afforded to HERV in the Cold Spring Harbor text Retroviruses, edited by Drs. Coffin, Varmus, and Hughes. But to my surprise, the sources were few, and there was no information about HERV targeted to the general layman.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>As a fiction writer, however, I was in heaven--ancient viruses in our genes! And hardly anyone had heard of them. <o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>If I had had any sense, I would have used that for what it seemed at face value--a ticking time bomb waiting to go off and destroy us all. But I had different ideas. I asked, what do HERV do for us? Why do we allow them to stay in our genome?<SPAN style="mso-spacerun: yes"> </SPAN><o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>In fact, even in 1983, when I was preparing my novel Blood Music, I asked myself--what do viruses do for us? Why do we allow them to infect us? I suspected they were part of a scheme involving computational DNA, but could not fit them in...not just then. HIV was just coming into the public consciousness, and retroviruses were still controversial. <o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>I learned that HERV express in significant numbers in pregnant women, producing defective viral particles apparently incapable of passing to another human host. So what were they--useless hangers-on? Genetic garbage? Instinctively, I could not believe that. I’ve always been skeptical of the idea of junk DNA, and certainly skeptical of the idea that the non-coding portions of DNA are deserts of slovenly and selfish disuse. <o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>HERV seemed to be something weird, something wonderful and counter-intuitive--and they were somehow connected with HIV, a species-crossing retrovirus that had become one of the major health scourges on the planet. I couldn’t understand the lack of papers and other source material on HERV. Why weren’t they being investigated by every living biologist?<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>In my rapidly growing novel, I wrote of Kaye Lang, a scientist who charts the possible emergence of an HERV capable of producing virions--particles that can infect other humans. To her shock, the HERV she studies is connected by investigators at the CDC with a startling new phenomenon, the apparent mutation and death of infants.<SPAN style="mso-spacerun: yes"> </SPAN>The infectious HERV is named SHEVA. But SHEVA turns out to be far more than a disease. It’s a signal prompting the expression of a new phenotype, a fresh take on humanity--a signal on Darwin’s Radio.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>In 1999, the novel was published. To my gratified surprise, it was reviewed in Nature and other science journals. Within a very few months, news items about HERV became far more common. New scientific papers reported that ERV-related genes could help human embryos implant in the womb--something that has recently been given substantial credence. And on the web, I encountered the fascinating papers of Dr. Luis P. Villarreal.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>I felt as if I had spotted a big wave early, and jumped on board just in time. Still, we have not found any evidence of infectious HERV--and there is certainly no proof that retroviruses do everything I accuse them of in Darwin’s Radio. But after four years, the novel holds up fairly well. It’s not yet completely out of date. <o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>And the parallel of HERV with lysogenic phages is still startling.<SPAN style="mso-spacerun: yes"> </SPAN><o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>But back to the real world of evolution and genetics.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>The picture we see now in genetics is complex. Variation can occur in a number of ways. DNA sequence is not fate; far from it. The same sequence can yield many different products. Complexes of genes lie behind most discernible traits. Genes can be turned on and off at need. Non-coding DNA is becoming extremely important to understanding how genes do their work. <o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>As well, mutations are not reliable indicators of irreversible change. In many instances, mutations are self-directed responses to the environment. Changes can be reversed and then reenacted at a later time--and even passed on as reversible traits to offspring.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Even such neo-Darwinian no-nos as the multiple reappearances of wings in stick insects points toward the existence of a genetic syntax, a phylogenetic toolbox, rather than random mutation. Wings are in the design scheme, the bauplan. When insects need them, they can be pulled from the toolbox and implemented once again.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>We certainly don’t have to throw out Mr. Darwin. Natural selection stays intact. Random variation is not entirely excised. But the neo-Darwinian dogma of random mutation as a cause of all variation, without exception, has been proven wrong.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Like genetics, evolution is not just one process, but a collaboration of many processes and techniques. And evolution is not entirely blind. Nor must evolution be directed by some outside and supernatural intelligence to generate the diversity and complexity we see. Astonishing creativity, we’re discovering, can be explained by wonderfully complicated internal processes.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>These newer views of evolution involve learning and teamwork. Evolution is in large part about communication--comparing notes and swapping recipes, as it were.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>It appears that life has a creative memory, and knows when and how to use it. <o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Let’s take a look at what the scientists have discovered thus far. <o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Viruses can and do ferry useful genes between organisms. Viruses can also act as site-specific regulators of genetic expression. Within a cell, transposable elements--jumping genes similar in some respects to endogenous retroviruses--can also be targeted to specific sites and can regulate specific genes. Both viruses and transposable elements can be activated by stress-related chemistry, either in their capacity as selfish pathogens--a stressed organism may be a weakened organism--or as beneficial regulators of gene expression--a stressed organism may need to change its nature and behavior. <o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Viral transmission occurs not just laterally, from host to host (often during sex), but vertically through inherited mobile elements and endogenous retroviruses.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Chemical signals between organisms can also change genetic expression. As well, changes in the environment can lead to modification of genetic expression in both the individual and in later generations of offspring. These changes may be epigenetic--factors governing which genes are to be expressed in an organism can be passed on from parent to offspring--but also genetic, in the sequence and character of genes.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Our immune system functions as a kind of personal radar, sampling the environment and providing information that allows us to adjust our immune response--and possibly other functions, as well.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>These pathways and methods of regulation and control point toward a massive natural network capable of exchanging information--not just genes themselves, but how genes should be expressed, and when. Each gene becomes a node in a genomic network that solves problems on the cellular level. Cells talk to each other through chemistry and gene transfer. And through sexual recombination, pheromonal interaction, and viruses, multicellular organisms communicate with each other and thus become nodes in a species-wide network.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>On the next level, through predation and parasitism, as well as through cross-species exchange of genes, an ecosystem becomes a network in its own right, an interlinking of species both cooperating and competing, often at the same time.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Neural networks from beehives to brains solve problems through the exchange and the selective cancellation and modification of signals. Species and organisms in ecosystems live and die like signals in a network. Death--the ax of natural selection--is itself a signal, a stop-code, if you will.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Networks of signals exist in all of nature, from top to bottom--from gene exchange to the kinds of written and verbal communication we see at this event. Changes in genes can affect behavior. Sometimes even speeches can affect behavior.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Evolution is all about competition and cooperation--and communication. <o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Traditional theories of evolution emphasize the competitive aspect and de-emphasize or ignore the cooperative aspect. But developments in genetics and molecular biology render this emphasis implausible. <o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Genes go walkabout far too often. We are just beginning to understand the marvelous processes by which organisms vary and produce the diversity of living nature.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>For now, evolution is a wonderful mystery, ripe for further scientific exploration. The gates have been blown open once again. <o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>And as a science fiction writer, I’d like to make two provocative and possibly ridiculous predictions.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>The first is that the more viruses may be found in an organism and its genome, the more rapid will be that organism’s rate of mutation and evolution.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>And the second: Bacteria are such wonderful, slimmed-down organisms, lacking introns and all the persiflage of eukaryotic biology. It seems to me that rather than bacteria being primitive, and that nucleated cells evolved from them, the reverse could be true. Bacteria may once have occupied large, primitive eukaryotic cells, perhaps similar to those seen in the fossil Vendobionts--or the xenophyophores seen on ocean bottoms today. There, they evolved and swam within the relative safety of the membranous sacs, providing various services, including respiration. They may have eventually left these sacs and become both wandering minstrels and predators, serving and/or attacking other sacs in the primitive seas. <o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Eventually, as these early eukaryotic cells advanced, and perhaps as the result of a particularly vicious cycle of bacterial predation, they shed nearly all their bacterial hangers-on in a protracted phase of mutual separation, lasting hundreds of millions or even billions of years. <o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>And what the now trim and super-efficient bacteria--the sports cars of modern biology--left behind were the most slavish and servile members of that former internal community: the mitochondria.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Which group will prove to have made the best decision, to have taken the longest and most lasting road?<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>________<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>1<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Meaning-Based Natural Intelligence<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Vs.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Information-Based Artificial Intelligence<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>By<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Eshel Ben Jacob and Yoash Shapira<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>School of Physics and Astronomy<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Raymond & Beverly Sackler Faculty of Exact Sciences<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Tel Aviv University, 69978 Tel Aviv Israel<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Abstract<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>In this chapter, we reflect on the concept of Meaning-Based Natural Intelligence - a<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>fundamental trait of Life shared by all organisms, from bacteria to humans, associated with:<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>semantic and pragmatic communication, assignment and generation of meaning, formation of<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>self-identity and of associated identity (i.e., of the group the individual belongs to),<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>identification of natural intelligence, intentional behavior, decision-making and intentionally<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>designed self-alterations. These features place the Meaning-Based natural Intelligence<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>beyond the realm of Information-based Artificial Intelligence. Hence, organisms are beyond<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>man-made pre-designed machinery and are distinguishable from non-living systems.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Our chain of reasoning begins with the simple distinction between intrinsic and<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>extrinsic contextual causations for acquiring intelligence. The first, associated with natural<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>intelligence, is required for the survival of the organism (the biotic system) that generates it.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>In contrast, artificial intelligence is implemented externally to fulfill a purpose for the benefit<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>of the organism that engineered the “Intelligent Machinery”. We explicitly propose that the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>ability to assign contextual meaning to externally gathered information is an essential<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>requirement for survival, as it gives the organism the freedom of contextual decision-making.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>By contextual, we mean relating to the external and internal states of the organism and the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>internally stored ontogenetic knowledge it has generated. We present the view that contextual<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>interpretation of information and consequent decision-making are two fundamentals of<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>natural intelligence that any living creature must have.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>2<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>A distinction between extraction of information from data vs. extraction of meaning from<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>information is drawn while trying to avoid the traps and pitfalls of the “meaning of meaning”<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>and the “emergence of meaning” paradoxes. The assignment of meaning (internal<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>interpretation) is associated with identifying correlations in the information according to the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>internal state of the organism, its external conditions and its purpose in gathering the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>information. Viewed this way, the assignment of meaning implies the existence of intrinsic<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>meaning, against which the external information can be evaluated for extraction of meaning.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>This leads to the recognition that the organism has self-identity.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>We present the view that the essential differences between natural intelligence and<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>artificial intelligence are a testable reality, untested and ignored since it had been wrongly<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>perceived as inconsistent with the foundations of physics. We propose that the inconsistency<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>arises within the current, gene-network picture of the Neo-Darwinian paradigm (that regards<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>organisms as equivalent to a Turing machine) and not from in principle contradiction with<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>physical reality. Once the ontological reality of organisms’ natural intelligence is verified, a<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>paradigm shift should be considered, where inter- and intra-cellular communication and<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>genome plasticity (based on junk DNA” and the abundance of transposable elements) play<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>crucial roles. In this new paradigm, communication and gene plasticity might be able to<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>sustain the organisms with regulated freedom of choice between different available<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>responses.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>There have been many attempts to attribute the cognitive abilities of organisms (e.g.,<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>consciousness) to underlying quantum-mechanical mechanisms, which can directly affect the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>”mechanical” parts of the organism (i.e., atomic and molecular excitations) despite thermal<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>noise. Here, organisms are viewed as continuously self-organizing open systems that store<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>past information, external and internal. These features enable the macroscopic organisms to<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>have features analogous to some features in quantum mechanical systems. Yet, they are<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>essentially different and should not be mistaken to be a direct reflection of quantum effects.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>On the conceptual level, the analogy is very useful as it can lead to some insights from the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>knowledge of quantum mechanics. We show, for example, how it enables to metaphorically<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>bridge between the Aharonov-Vaidman and Aharonov-Albert-Vaidman concepts of<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Protective and Weak Measurements in quantum mechanics (no destruction of the quantum<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>state) with Ben Jacob’s concept of Weak-Stress Measurements, (e.g., exposure to non-lethal<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>levels of antibiotic) in the study of organisms. We also reflect on the metaphoric analogy<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>3<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>between Aharonov-Anandan-Popescue-Vaidman Quantum Time-Translation Machine and<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>the ability of an external observer to deduce on an organism’s decision-making vs. arbitrary<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>fluctuations. Inspired by the concept of Quantum Non-Demolition measurements we propose<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>to use biofluoremetry (the use of bio-compatible fluorescent molecules to study intracellular<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>spatio-temporal organization and functional correlations) as a future methodology of<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Intracellular Non-Demolition Measurements. We propose that the latter, performed during<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Weak-Stress Measurements of the organism, can provide proper schemata to test the special<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>features associated with natural intelligence.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Prologue - From Bacteria Thou Art<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Back in 1943, a decade before the discovery of the structure of the DNA, Schrödinger, one of<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>the founders of quantum mechanics, delivered a series of public lectures, later collected in a<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>book entitled “What is Life? The Physical Aspects of Living Cells” [1]. The book begins<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>with an “apology” and explanation why he, as a physicist, took the liberty to embark on a<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>quest related to Life sciences.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>A scientist is supposed to have a complete and thorough I of knowledge, at first hand, of<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>some subjects and, therefore, is usually expected not to write on any topic of which he is<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>not a life master. This is regarded as a matter of noblesse oblige. For the present<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>purpose I beg to renounce the noblesse, if any, and to be the freed of the ensuing<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>obligation. …some of us should venture to embark on a synthesis of facts and theories,<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>albeit with second-hand and incomplete knowledge of some of them -and at the risk of<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>making fools of ourselves, so much for my apology.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Schrödinger proceeds to discuss the most fundamental issue of Mind from Matter [1-3]. He<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>avoids the trap associated with a formal definition of Life and poses instead more pragmatic<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>questions about the special features one would associate with living organisms - to what<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>extent these features are or can be shared by non-living systems.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>What is the characteristic feature of life? When is a piece of matter said to be alive?<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>When it goes on 'doing something', moving, exchanging material with its environment,<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>and so forth, and that for a much longer period than we would expect of an inanimate<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>piece of matter to 'keep going' under similar circumstances.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>4<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>…Let me use the word 'pattern' of an organism in the sense in which the biologist calls<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>it 'the four-dimensional pattern', meaning not only the structure and functioning of that<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>organism in the adult, or in any other particular stage, but the whole of its ontogenetic<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>development from the fertilized egg the cell to the stage of maturity, when the organism<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>begins to reproduce itself.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>To explain how the organism can keep alive and not decay to equilibrium, Schrödinger<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>argues from the point of view of statistical physics. It should be kept in mind that the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>principles of non-equilibrium statistical physics [4-6] with respect to organisms, and<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>particularly to self-organization in open systems [7-12], were to be developed only a decade<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>later, following Turing’s papers, “The chemical basis of morphogenesis”, “The morphogen<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>theory of phyllotaxis” and “Outline of the development of the daisy” [13-15].<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>The idea Schrödinger proposed was that, to maintain life, it was not sufficient for organisms<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>just to feed on energy, like man-made thermodynamic machines do. To keep the internal<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>metabolism going, organisms must absorb low-entropy energy and exude high-entropy waste<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>products.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>How would we express in terms of the statistical theory the marvelous faculty of a living<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>organism, by which it delays the decay into thermodynamic equilibrium (death)? We<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>said before: 'It feeds upon negative entropy', attracting, as it was a stream of negative<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>entropy upon itself, to compensate the entropy increase it produces by living and thus<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>to maintain itself on a stationary and fairly low entropy level. Indeed, in the case of<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>higher animals we know the kind of orderliness they feed upon well enough, viz. the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>extremely well-ordered state of matter in more or less complicated organic compounds,<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>which serve them as foodstuffs. After utilizing it they return it in a very much degraded<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>form -not entirely degraded, however, for plants can still make use of it.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>The idea can be continued down the line to bacteria - the most fundamental independent form<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>of life on Earth [16-18]. They are the organisms that know how to reverse the second law of<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>thermodynamics in converting high-entropy inorganic substance into low-entropy living<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>matter. They do this cooperatively, so they can make use of any available source of lowentropy<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>energy, from electromagnetic fields to chemical imbalances, and release highentropy<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>energy to the environment, thus acting as the only Maxwell Demons of nature. The<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>existence of all other creatures depends on these bacterial abilities, since no other organism<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>on earth can do it on its own. Today we understand that bacteria utilize cooperatively the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>principles of self-organization in open systems [19-36]. Yet bacteria must thrive on<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>5<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>imbalances in the environment; in an ideal thermodynamic bath with no local and global<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>spatio-temporal structure, they can only survive a limited time.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>In 1943, the year Schrödinger delivered his lectures, Luria and Delbruck performed a<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>cornerstone experiment to prove that random mutation exists [37]: non-resistant bacteria<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>were exposed to a lethal level of bacteriophage, and the idea was that only those that<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>happened to go through random mutation would survive and be observed. Their experiments<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>were then taken as a crucial support for the claim of the Neo-Darwinian dogma that all<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>mutations are random and can occur during DNA replication only [38-41]. Schrödinger<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>proposed that random mutations and evolution can in principle be accounted for by the laws<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>of physics and chemistry (at his time), especially those of quantum mechanics and chemical<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>bonding. He was troubled by other features of Life, those associated with the organisms’<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>ontogenetic development during life. The following are additional extracts from his original<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>lectures about this issue:<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Today, thanks to the ingenious work of biologists, mainly of geneticists, during the last<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>thirty or forty years, enough is known about the actual material structure of organisms<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>and about their functioning to state that, and to tell precisely why present-day physics<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>and chemistry could not possibly account for what happens in space and time within a<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>living organism.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>…I tried to explain that the molecular picture of the gene made it at least conceivable<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>that the miniature code should be in one-to-one correspondence with a highly<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>complicated and specified plan of development and should somehow contain the means<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>of putting it into operation. Very well then, but how does it do this? How are we going<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>to turn ‘conceivability’ into true understanding?<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>…No detailed information about the functioning of the genetic mechanism can emerge<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>from a description of its structure as general as has been given above. That is obvious.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>But, strangely enough, there is just one general conclusion to be obtained from it, and<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>that, I confess, was my only motive for writing this book. From Delbruck's general<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>picture of the hereditary substance it emerges that living matter, while not eluding the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>'laws of physics' as established up to date, is likely to involve 'other laws of physics'<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>hitherto unknown, which, however, once they have been revealed, will form just as<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>integral a part of this science as the former. This is a rather subtle line of thought, open<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>to misconception in more than one respect. All the remaining pages are concerned with<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>making it clear.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>With the discovery of the structure of DNA, the evidence for the one-gene-one-protein<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>scheme and the discoveries of the messenger RNA and transfer RNA led to the establishment<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>of the gene-centered paradigm in which the basic elements of life are the genes. According to<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>this paradigm, Schrödinger’s old dilemma is due to lack of knowledge at the time, so the new<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>6<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>findings render it obsolete. The dominant view since has been that all aspects of life can be<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>explained solely based on the information stored in the structure of the genetic material. In<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>other words, the dominant paradigm was largely assumed to be a self-consistent and a<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>complete theory of living organisms [38-41], although some criticism has been raised over<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>the years [42-47], mainly with emphasis on the role of bacteria in symbiogenesis of species.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>The latter was proposed in (1926) by Mereschkovsky in a book entitled "Symbiogenesis and<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>the Origin of Species" and by Wallin in a book entitled "Symbionticism and the Origins of<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Species". To quote Margulis and Sagan [44]:<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>The pioneering biologist Konstantin S. Merezhkovsky first argued in 1909 that the little<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>green dots (chloroplasts) in plant cells, which synthesize sugars in the presence of<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>sunlight, evolved from symbionts of foreign origin. He proposed that “symbiogenesis”—<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>a term he coined for the merger of different kinds of life-forms into new species—was a<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>major creative force in the production of new kinds of organisms. A Russian anatomist,<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Andrey S. Famintsyn, and an American biologist, Ivan E. Wallin, worked<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>independently during the early decades of the twentieth century on similar hypotheses.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Wallin further developed his unconventional view that all kinds of symbioses played a<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>crucial role in evolution, and Famintsyn, believing that chloroplasts were symbionts,<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>succeeded in maintaining them outside the cell. Both men experimented with the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>physiology of chloroplasts and bacteria and found striking similarities in their structure<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>and function. Chloroplasts, they proposed, originally entered cells as live food—<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>microbes that fought to survive—and were then exploited by their ingestors. They<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>remained within the larger cells down through the ages, protected and always ready to<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>reproduce. Famintsyn died in 1918; Wallin and Merezhkovsky were ostracized by their<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>fellow biologists, and their work was forgotten. Recent studies have demonstrated,<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>however, that the cell’s most important organelles—chloroplasts in plants and<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>mitochondria in plants and animals—are highly integrated and well-organized former<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>bacteria.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>The main thesis is that microbes, live beings too small to be seen without the aid of<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>microscopes, provide the mysterious creative force in the origin of species. The<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>machinations of bacteria and other microbes underlie the whole story of Darwinian<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>evolution. Free-living microbes tend to merge with larger forms of life, sometimes<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>seasonally and occasionally, sometimes permanently and unalterably. Inheritance of<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>«acquired bacteria» may ensue under conditions of stress. Many have noted that the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>complexity and responsiveness of life, including the appearance of new species from<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>differing ancestors, can be comprehended only in the light of evolution. But the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>evolutionary saga itself is legitimately vulnerable to criticism from within and beyond<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>science. Acquisition and accumulation of random mutations simply are, of course,<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>important processes, but they do not suffice. Random mutation alone does not account<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>for evolutionary novelty. Evolution of life is incomprehensible if microbes are omitted<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>from the story. Charles Darwin (1809-1882), in the absence of evidence, invented<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>«pangenes» as the source of new inherited variation. If he and the first evolutionist, the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>7<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Frenchman Jean Baptiste de Lamarck, only knew about the sub visible world what we<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>know today, they would have chuckled, and agreed with each other and with us.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>The Neo-Darwinian paradigm began to draw some additional serious questioning following<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>the human genome project that revealed less than expected genes and more than expected<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>transposable elements. The following is a quote from the Celera team [18].<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Taken together the new findings show the human genome to be far more than a<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>mere sequence of biological code written on a twisted strand of DNA. It is a dynamic<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>and vibrant ecosystem of its own, reminiscent of the thriving world of tiny Whos<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>that Dr. Seuss' elephant, Horton, discovered on a speck of dust . . . One of the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>bigger surprises to come out of the new analysis, some of the "junk" DNA scattered<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>throughout the genome that scientists had written off as genetic detritus apparently<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>plays an important role after all.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Even stronger clues can be deduced when social features of bacteria are considered: Eons<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>before we came into existence, bacteria already invented most of the features that we<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>immediately think of when asked to distinguish life from artificial systems: extracting<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>information from data, assigning existential meaning to information from the environment,<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>internal storage and generation of information and knowledge, and inherent plasticity and<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>self-alteration capabilities [9].<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Let’s keep in mind that about 10% of our genes in the nucleus came, almost unchanged,<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>from bacteria. In addition, each of our cells (like the cells of any eukaryotes and plans)<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>carries its own internal colony of mitochondria - the intracellular multiple organelles that<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>carry their own genetic code (assumed to have originated from symbiotic bacteria), inherited<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>only through the maternal line. One of the known and well studied functions of mitochondria<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>is to produce energy via respiration (oxidative phosphorylation), where oxygen is used to<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>turn extracellular food into internally usable energy in the form of ATP. The present<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>fluorescence methods allow video recording of the mitochondria dynamical behavior within<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>living cells reveal that they play additional crucial roles for example in the generation of<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>intracellular calcium waves in glia cells[48-50].<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Looking at the spatio-temporal behavior of mitochondria, it appears very much like that of<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>bacterial colonies. It looks as if they all move around in a coordinated manner replicate and<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>even conjugate like bacteria in a colony. From Schrödinger’s perspective, it seems that not<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>8<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>only do they provide the rest of the cell with internal digestible energy and negative entropy<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>but they also make available relevant information embedded in the spatio-temporal<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>correlations of localized energy transfer. In other words, each of our cells carries hundreds to<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>thousands of former bacteria as colonial Maxwell Demons with their own genetic codes, selfidentity,<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>associated identity with the mitochondria in other cells (even if belong to different<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>tissues), and their own collective self-interest (e.g., to initiate programmed death of their host<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>cell).<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Could it be, then, that the fundamental, causality-driven schemata of our natural intelligence<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>have also been invented by bacteria [9,47], and that our natural intelligence is an ‘evolutionimproved<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>version’, which is still based on the same fundamental principles and shares the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>same fundamental features? If so, perhaps we should also learn something from bacteria<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>about the fundamental distinction between our own Natural Intelligence and the Artificial<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Intelligence of our created machinery.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Introduction<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>One of the big ironies of scientific development in the 20th century is that its burst of<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>creativity helped establish the hegemony of a paradigm that regards creativity as an illusion.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>The independent discovery of the structure of DNA (Universal Genetic Code), the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>introduction of Chomsky’s notion about human languages (Universal Grammar – Appendix<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>B) and the launching of electronic computers (Turing Universal Machines- Appendix C), all<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>occurring during the 1950’s, later merged and together established the dominance of<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>reductionism. Western philosophy, our view of the world and our scientific thought were<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>under its influence ever since, to the extent that many hold the deep conviction that the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Universe is a Laplacian, mechanical universe in which there is no room for renewal or<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>creativity [47].<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>In this Universe, concepts like cognition, intelligence or creativity are seen as mere<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>illusion. The amazing process of evolution (from inanimate matter, through organisms of<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>increasing complexity, to the emergence of intelligence) is claimed to be no more than a<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>successful accumulation of errors (random mutations) enhanced by natural selection (the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Darwinian picture). Largely due to the undeniable creative achievements of science,<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>unhindered by the still unsolved fundamental questions, the hegemony of reductionism<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>9<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>reached the point where we view ourselves as equivalent to a Universal Turing machine.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Now, by the logical reasoning inherent in reductionism, we are not and can not be essentially<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>different ‘beings’ from the machinery we can create like complex adaptive systems [51]. The<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>fundamental assumption is of top-level emergence: a system consists of a large number of<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>autonomous entities called agents, that individually have very simple behavior and that<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>interact with each other in simple ways. Despite this simplicity, a system composed of large<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>numbers of such agents often exhibits what is called emergent behavior that is surprisingly<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>complex and hard to predict. Moreover, in principle, we can design and build machinery that<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>can even be made superior to human cognitive abilities [52]. If so, we represent living<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>examples of machines capable of creating machines (a conceptual hybrid of ourselves and<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>our machines) ‘better” then themselves, which is in contradiction with the paradigmatic idea<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>of natural evolution: that all organisms evolved according to a “Game of Random Selection”<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>played between a master random-number generator (Nature) and a collection of independent,<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>random number generators (genomes). The ontological reality of Life is perceived as a game<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>with two simple rules – the second law of thermodynamics and natural selection. Inherent<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>meaning and causality-driven creativity have no existence in such a reality – the only<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>meaning of life is to survive. If true, how come organisms have inherent programming to<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>stop living? So here is the irony: that the burst of real creativity was used to remove<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>creativity from the accepted epistemological description of Nature, including life.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>The most intriguing challenge associated with natural intelligence is to resolve the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>difficulty of the apparent contradiction between its fundamental concepts of decision-making<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>and creativity and the fundamental principle of time causality in physics. Ignoring the trivial<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>notion, that the above concepts have no ontological reality, intelligence is assumed to reflect<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Top-Level-Emergence in complex systems. This commonly accepted picture represents the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>“More is Different” view [53], of the currently hegemonic reductionism-based<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>constructivism paradigm. Within this paradigm, there are no primary differences between<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>machinery and living systems, so the former can, in principle, be made as intelligent as the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>latter and even more. Here we argue that constructivism is insufficient to explain natural<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>intelligence, and all-level generativism, or a “More is Different on All Levels” principle, is<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>necessary for resolving the emergence of the meaning paradox [9]. The idea is the cogeneration<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>of meaning on all hierarchical levels, which involves self-organization and<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>contextual alteration of the constituents of the biotic system on all levels (down to the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>10<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>genome) vs. top-level emergence in complex systems with pre-designed and pre-prepared<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>elements [51,52].<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>We began in the prologue with the most fundamental organisms, bacteria,<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>building the argument towards the conclusion that recent observations of bacterial collective<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>self-identity place even them, and not only humans, beyond a Turing machine: Everyone<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>agrees that even the most advanced computers today are unable to fully simulate even an<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>individual, most simple bacterium of some 150 genes, let alone more advanced bacteria<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>having several thousands of genes, or a colony of about 1010 such bacteria. Within the current<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Constructivism paradigm, the above state of affairs reflects technical or practical rather than<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>fundamental limitations. Namely, the assumption is that any organelle, our brain included, as<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>well as any whole organism, is in principle equivalent to, and thus may in principle be<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>mapped onto a universal Turing Machine – the basis of all man-made digital information<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>processing machines (Appendix C). We argue otherwise. Before doing so we will place<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Turing’s notions about “Intelligent Machinery” [54] and “Imitation Game” [55] within a new<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>perspective [56], in which any organism, including bacteria, is in principle beyond machinery<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[9,47]. This realization will, in turn, enable us to better understand ourselves and the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>organisms our existence depends on – the bacteria.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>To make the argument sound, we take a detour and reflect on the philosophical<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>question that motivated Turing to develop his conceptual computing machine: We present<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Turing’s universal machine within the causal context of its invention [57], as a manifestation<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>of Gödel’s theorem [58-60], by itself developed to test Hilbert’s idea about formal axiomatic<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>systems [61]. Then we continued to reexamine Turing’s seminal papers that started the field<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>of Artificial Intelligence, and argue that his “Imitation Game”, perceived ever since as an<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>“Intelligence Test”, is actually a “Self-Non-Self Identity Test”, or “Identity Game” played<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>between two humans competing with a machine by rules set from machines perspective, and<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>a machine built by another human to win the game by presenting a false identity.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>We take the stand that Artificial and Natural Intelligence are distinguishable, but not<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>by Turing’s imitation game which is set from machines perspective - the rules of the game<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>simply do not allow expression of the special features of natural intelligence. Hence, for<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>distinction between the two versions of Intelligence, the rules of the game must be modified<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>11<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>in various ways. Two specific examples are presented, and it is propose that it’s unlikely for<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>machines to win these new versions of the game.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Consequently, we reflect on the following questions about natural intelligence: 1. Is it a<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>metaphor or overlooked reality? 2. How can its ontological reality be tested? 3. Is it<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>consistent with the current gene-networks picture of the Neo-Darwinian paradigm? 4. Is it<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>consistent with physical causal determinism and time causality? To answer the questions, we<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>first present the current accepted picture of organisms as ‘watery Turing machines’ living in<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>a predetermined Laplacian Universe. We then continue to describe the ‘creative genome’<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>picture and a new perspective of the organism as a system with special built-in means to<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>sustain ‘learning from experience’ for decision-making [47]. For that, we reflect on the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>analogy between the notions of the state of multiple options in organisms, the choice function<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>in the Axiom of Choice in mathematics (Appendix D) and the superposition of states in<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>quantum mechanics (Appendix E). According to the analogy, destructive quantum<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>measurements (that involve collapse of the wave function) are equivalent to strong-stress<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>measurements of the organisms (e.g., lethal levels of antibiotics) and to intracellular<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>destructive measurements (e.g., gene-sequencing and gene-expression in which the organism<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>is disassembled). Inspired by the new approach of protective quantum measurements, which<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>do not involve collapse of the wave function (Appendix E), we propose new conceptual<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>experimental methodologies of biotic protective measurements - for example, by exposing<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>the organisms to weak stress, like non-lethal levels of antibiotic [62,63], and by using<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>fluoremetry to record the intracellular organization and dynamics keeping the organism intact<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[64-66].<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Formation of self-identity and of associated identity (i.e., of the group the individual belongs<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>to), identification of natural intelligence in other organisms, intentional behavior, decisionmaking<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[67-75] and intentionally designed self-alterations require semantic and pragmatic<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>communication [76-80], are typically associated with cognitive abilities and meaning-based<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>natural intelligence of human. One might accept their existence in the “language of dolphins”<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>but regard them as well beyond the realm of bacterial communication abilities. We propose<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>that this notion should be reconsidered: New discoveries about bacterial intra- and intercellular<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>communication [81-92], colonial semantic and pragmatic language [9,47,93,94], the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>above mentioned picture of the genome [45-47], and the new experimental methodologies<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>led us to consider bacterial natural intelligence as a testable reality.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>12<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Can Organisms be Beyond Watery Turing Machines<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>in Laplace’s Universe?<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>The objection to the idea about organisms’ regulated freedom of choice can be traced to the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Laplacian description of Nature. In this picture, the Universe is a deterministic and<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>predictable machine composed of matter parts whose functions obey a finite set of rules with<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>specified locality [95-98]. Laplace has also implicitly assumed that determinism,<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>predictability and locality go hand in hand with computability (using current terminology),<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>and suggested that:<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>“An intellect which at any given moment knew all the forces that animate Nature and<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>the mutual positions of the beings that comprises it. If this intellect were vast enough to<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>submit its data to analysis, could condense into a single formula the movement of the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>greatest bodies of the universe and that of the lightest atom: for such an intellect<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>nothing could be uncertain: and the future just like the past would be present before its<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>eyes.”<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Note that this conceptual intellect (Lacplace’s demon) is assumed to be an external observer,<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>capable, in principle, of performing measurements without altering the state of the system,<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>and, like Nature itself, equivalent to a universal Turing machine.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>In the subsequent two centuries, every explicit and implicit assumption in the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Laplacean paradigm has proven to be wrong in principle (although sometimes a good<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>approximation on some scales). For example, quantum mechanics ruled out locality and the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>implicit assumption about simultaneous and non-destructive measurements. Studies in<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>computer sciences illustrate that a finite deterministic system (with sufficient algorithmic<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>complexity) can be beyond Turing machine computability (the size of the required machine<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>should be comparable with that of the whole universe or the computation time of a smaller<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>machine would be comparable with the time of the universe). Computer sciences, quantum<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>measurements theory and statistical physics rule out backward computability even if the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>present state is accurately known.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>13<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Consequently, systems’ unpredictability to an external observer is commonly<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>accepted. Yet, it is still largely assumed that nature itself as a whole and any of its parts must<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>in principle be predetermined, that is, subject to causal determinism [98],which must go hand<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>in hand with time causality [96]:<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Causal determinism is the thesis that all events are causally necessitated by prior<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>events, so that the future is not open to more than one possibility. It seems to be<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>equivalent to the thesis that the future is in principle completely predictable (even if<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>in practice it might never actually be possible to predict with complete accuracy).<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Another way of stating this is that for everything that happens there are conditions<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>such that, given them, nothing else could happen, meaning that a completely<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>accurate prediction of any future event could in principle be given, as in the famous<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>example of Laplace’s demon.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Clearly, a decomposable state of mixed multiple options and hence decision-making<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>can not have ontological reality in a universe subject to ‘causal determinism’. Moreover, in<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>this Neo-Laplacian Universe, the only paradigm that does not contradict the foundations of<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>logic is the Neo-Darwinian one. It is also clear that in such clockwork universe there can not<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>be an essential difference, for example, between self-organization of a bacterial colony and<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>self-organization of a non living system such as electro-chemical deposition [99,100].<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Thus, all living organisms, from bacteria to humans, could be nothing but watery Turing<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>machines created and evolved by random number generators. The conviction is so strong that<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>it is pre-assumed that any claim regarding essential differences between living organisms and<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>non living systems is an objection to the foundations of logic, mathematics, physics and<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>biology. The simple idea, that the current paradigm in life sciences might be the source of the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>apparent inconsistency and hence should be reexamined in light of the new discoveries, is<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>mostly rejected point-blank.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>In the next sections we present a logical argument to explain why the Neo-Laplacian<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Universe (with a built-in Neo-Darwinian paradigm) can not provide a complete and selfconsistent<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>description of Nature even if random number generators are called for the rescue.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>The chain of reasoning is linked with the fact that formal axiomatic systems cannot provide<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>complete bases for mathematics and the fact that a Universal Turing Machine cannot answer<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>all the questions about its own performance.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Hilbert’s Vision –<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>14<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Meaning-Free Formal Axiomatic Systems<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Computers were invented to clarify Gödel’s theorem, which by itself has been triggered by<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>the philosophical question about the foundation of mathematics raised by Russell’s logical<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>paradoxes [61]. These paradoxes attracted much attention, as they appeared to shatter the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>solid foundations of mathematics, the most elegant creation of human intelligence. The best<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>known paradox has to do with the logical difficulty to include the intuitive concept of selfreference<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>within the foundations of Principia Mathematica: If one attempts to define the set<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>of all sets that are not elements of themselves, a paradox arises - that if the set is to be an<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>element of itself, it shouldn’t, and vice versa.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>As an attempt to eliminate such paradoxes from the foundations of mathematics, Hilbert<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>invented his meta-mathematics. The idea was to lay aside the causal development of<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>mathematics as a meaningful ‘tool’ for our survival, and set up a formal axiomatic system so<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>that a meaning-independent mathematics can be built starting from a set of basic postulates<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>(axioms) and well-defined rules of deduction for formulating new definitions and theorems<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>clean of paradoxes. Such a formal axiomatic system would then be a perfect artificial<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>language for reasoning, deduction, computing and the description of nature. Hilbert’s vision<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>was that, with the creation of a formal axiomatic system, the causal meaning that led to its<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>creation could be ignored and the formal system treated as a perfect, meaning-free game<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>played with meaning-free symbols on paper.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>His idea seemed very elegant - with “superior” rules, “uncontaminated” by meaning, at<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>our disposal, any proof would not depend any more on the limitation of human natural<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>language with its imprecision, and could be executed, in principle, by some advanced,<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>meaning-free, idealized machine. It didn’t occur to him that the built-in imprecision of<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>human linguistics (associated with its semantic and pragmatic levels) are not a limitation but<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>rather provide the basis for the flexibility required for the existence of our creativity-based<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>natural intelligence. He overlooked the fact that the intuitive (semantic) meanings of<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>intelligence and creativity have to go hand in hand with the freedom to err – there is no room<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>for creativity in a precise, clockwork universe.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Gödel’s Incompleteness/Undecidability Theorem<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>15<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>In 1931, in a monograph entitled “On Formally Undecidable Propositions of Principia<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Mathematica and Related Systems” [58-61], Gödel proved that Hilbert’s vision was in<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>principle wrong - an ideal ‘Principia Mathematica’ that is both self-consistent and complete<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>can not exist.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Two related theorems are formulated and proved in Gödel’s paper: 1. The<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Undecidability Theorem - within formal axiomatic systems there exist questions that are<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>neither provable nor disprovable solely on the basis of the axioms that define the system. 2.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>The Incompleteness Theorem - if all questions are decidable then there must exist<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>contradictory statements. Namely, a formal axiomatic system can not be both self-consistent<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>and complete.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>What Gödel showed was that a formal axiomatic system is either incomplete or<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>inconsistent even if just the elementary arithmetic of the whole numbers 0,1,2,3, is<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>considered (not to mention all of mathematics). He bridged between the notion of selfreferential<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>statements like “This statement is false” and Number Theory. Clearly,<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>mathematical statements in Number Theory are about the properties of whole numbers,<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>which by themselves are not statements, nor are their properties. However, a statement of<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Number Theory could be about a statement of Number Theory and even about itself (i.e.,<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>self-reference). To show this, he constructed one-to-one mapping between statements about<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>numbers and the numbers themselves. In Appendix D, we illustrate the spirit of Gödel’s<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>code.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Gödel’s coding allows regarding statements of Number Theory on two different levels:<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>(1) as statements of Number Theory, and (2) as statements about statements of Number<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Theory. Using his code, Gödel transformed the Epimenides paradox (“This statement is<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>false”) into a Number Theory version: “This statement of Number Theory is improvable”.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Once such a statement of Number Theory that describes itself is constructed, it proves<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Gödel’s theorems. If the statement is provable then it is false, thus the system is inconsistent.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Alternatively, if the statement is improvable, it is true but then the system is incomplete.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>One immediate implication of Gödel’s theorem is that no man-made formal axiomatic<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>system, no matter how complex, is sufficient in principle to capture the complexity of the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>simplest of all systems of natural entities – the natural whole numbers. In simple words, any<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>16<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>mathematical system we construct can not be prefect (self-consistent and complete) on its<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>own – some of its statements rely on external human intervention to be settled. It is thus<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>implied that either Nature is not limited by causal determinism (which can be mapped onto a<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>formal axiomatic system), or it is limited by causal determinism and there are statement<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>about nature that only an external Intelligence can resolve.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>The implications of Gödel’s theorem regarding human cognition are still under<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>debate [108]. According to the Lucas-Penrose view presented in “Minds, Machines and<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Gödel” by Lucas [101] and in “The emperor’s new mind: concerning computers, minds and<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>the law of physics” by Penrose [73], Gödel’s theorems imply that some of the brain functions<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>must act non-algorithmically. The popular version of the argumentation is: There exist<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>statements in arithmetic which are undecidable for any algorithm yet are intuitively decidable<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>for mathematicians. The objection is mainly to the notion of ‘intuition-based mathematical<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>decidability’. For example, Nelson in “Mathematics and the Mind” [109], writes:<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>For the argumentation presented in later sections, we would like to highlight the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>following: Russell’s paradoxes emerge when we try to assign the notion of self-reference<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>between the system and its constituents. Unlike living organisms, the sets of artificial<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>elements or Hilbert’s artificial systems of axioms are constructed from fixed components<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>(they do not change due to their assembly in the system) and with no internal structure that<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>can be a functional of the system as a whole as it is assembled. The system itself is also fixed<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>in time or, more precisely, has no temporal ordering. The set is constructed (or the system of<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>axioms is defined) by an external spectator who has the information about the system, i.e.,<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>the system doesn’t have internally stored information about itself and there are no intrinsic<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>causal links between the constituents.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>17<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Turing’s Universal Computing Machine<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Gödel’s theorem, though relating to the foundations of mathematical philosophy, led Alan<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Turing to invent the concept of computing machinery in 1936. His motivation was to test the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>relevance of three possibilities for formal axiomatic systems that are left undecidable in<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Gödel’s theorems: 1. they can not be both self consistent and complete but can be either; 2.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>they can not be self-consistent; 3. they can not be complete. Turing proved that formal<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>axiomatic systems must be at least incomplete.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>To prove his theorem, Gödel used his code to map both symbols and operations. The<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>proof itself, which is quite complicated, utilizes many recursively defined functions. Turing’s<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>idea was to construct mapping between the natural numbers and their binary representation<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>and to include all possible transformations between them to be performed by a conceptual<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>machine. The latter performs the transformation according to a given set of pre-constructed<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>instructions (program). Thus, while Gödel used the natural numbers themselves to prove his<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>theorems, Turing used the space of all possible programs, which is why he could come up<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>with even stronger statements. For later reflections, we note that each program can be<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>perceived as functional correlation between two numbers. In other words the inherent<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>limitations of formal axiomatic systems are better transparent in the higher dimension space<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>of functional correlations between the numbers.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Next, Turing looked for the kind of questions that the machine in principle can’t<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>solve irrespective of its physical size. He proved that the kinds of questions the machine can<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>not solve are about its own performance. The best known is the ‘halting problem’: the only<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>way a machine can know if a given specific program will stop within a finite time is by<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>actually running it until it stops.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>The proof is in the spirit of the previous “self-reference games”: assume there is a<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>program that can check whether any computer program will stop (Halt program). Prepare<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>another program which makes an infinite loop i.e., never stops (Go program). Then, make a<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>third Dual program which is composed of the first two such that a positive result of the Halt-<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Buster part will activate the Go-Booster part. Now, if the Dual program is fed as input to the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Halt-Buster program it leads to a paradox: the Dual program is constructed so that, if it is to<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>18<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>stop, the Halt-Buster part will activate the Go-Booster part so it shouldn’t stop and vice<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>versa. In a similar manner it can be proven that Turing machine in principle can not answer<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>questions associated with running a program backward in time.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Turing’s proof illustrates the fact that the notion of self-reference can not be part of<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>the space of functional correlations generated by Universal Turing machine. In this sense,<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Turing proved that if indeed Nature is equivalent to his machine (the implicit assumption<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>associated with causal determinism), we, as parts of this machine, can not in principle<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>generate a complete description of its functioning - especially so with regard to issues related<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>to systems’ self-reference.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>The above argumentations appear as nothing more than, at best, an amusing game.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Four years later (in 1940), Turing converted his conceptual machine into a real one – the first<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>electronic computer The Enigma, which helped its human users decipher codes used by<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>another machine. For later discussion we emphasize the following: The Enigma provided the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>first illustration, that while Turing machine is limited in answering on its own questions<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>about itself, it can provide a useful tool to aid humans in answering questions about other<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>systems, both artificial and natural. In other words, Turing machine can be a very useful tool<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>to help humans design another, improved Turing machine, but it is not capable of doing so on<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>its own - it can not answer questions about itself. In this sense, stand alone machines can not<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>have in principle the features we proposed to associate with natural intelligence.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>The Birth of Artificial Intelligence –<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Turing’s Imitation Game<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>In his 1936 paper [57], Turing claims that a universal computing machine of the kind he<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>proposed can, in principle, perform any computation that a human being can carry out. Ten<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>years later, he began to explore the potential range of functional capabilities of computing<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>machinery beyond computing and in 1950 he published an influential paper, “Computing<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Machinery and Intelligence” [55], which led to the birth of Artificial Intelligence. The paper<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>starts with a statement:<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>“I propose to consider the question, ‘Can machine think?’ This should begin with<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>definitions of the meaning of the terms ‘machine’ and ‘think’. The definitions might be<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>19<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>framed so as to reflect so far as possible the normal use of the words, but this attitude is<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>dangerous.”<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>So, in order to avoid the pitfalls of definitions of terms like ‘think’ and<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>‘intelligence’, Turing suggested replacing the question by another, which he claimed<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>“...is closely related to it and is expressed in relatively unambiguous words. The new<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>form of the problem can be described in terms of a game which we call the ‘imitation<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>game’...”<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>This proposed game, known as Turing’s Intelligence Test, involves three players: a<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>human examiner of identities I, and two additional human beings, each having a different<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>associated identity. Turing specifically proposed to use gender identity: a man A and a<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>woman B. The idea of the game is that the identifier I knows (A;B) as (X;Y) and he has to<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>identify, by written communication, who is who, aided by B (a cooperator) against the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>deceiving communication received from A (a defector). The purpose of I and B is that I will<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>be able to identify who is A. The identity of I is not specified in Turing’s paper saying that he<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>may be of either sex.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>It is implicitly assumed that the three players have a common language, which can be used<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>also by machines, and that I, A, and B also have a notion about the identity of the other<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>players. Turing looked at the game from a machinery vs. human perspective, asking<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>‘What will happen when a machine takes the part of A in this game?’<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>He proposed that a machine capable of causing I to fail in his identifications as often as a<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>man would, should be regarded intelligent. That is, the rate of false identifications of A made<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>by I with the aid of B is a measure of the intelligence of A.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>So, Turing’s intelligence test is actually about self identity and associated identity and<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>the ability to identify non-self identity of different kinds! Turing himself referred to his game<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>as an ‘imitation game’. Currently, the game is usually presented in a different version - an<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>intelligent being I has to identify who the machine is, while the machine A attempts to<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>imitated intelligent being. Moreover, it is perceived that the Inquirer I bases his identification<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>according to which player appears to him more intelligent. Namely, the game is presented as<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>20<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>an intelligence competition, and not about Self-Non-Self identity as was originally proposed<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>by Turing.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>From Kasparov’s Mistake to Bacterial Wisdom<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Already in 1947, in a public lecture [15], Turing presented a vision that within 50 years<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>computers will be able to compete with people in the chess game. The victory of Deep Blue<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>over Kasparov exactly 50 years later is perceived today by many, scientists and layman alike,<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>as clear proof for computers’ Artificial Intelligence [109,110]. Turing himself considered<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>success in a chess game only a reflection of superior computational capabilities (the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>computer’s ability to compute very fast all possible configurations). In his view, success in<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>the imitation game was a greater challenge. In fact, the connection between success in the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>imitation game and intelligence is not explicitly discussed in his 1950 paper. Yet, it has<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>become to be perceived as an intelligence test and led to the current dominant view of<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Artificial Intelligence, that in principle any living organism is equivalent to a universal<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Turing machine [107-110].<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Those who view the imitation game as an intelligence test of the machine<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>usually assume that the machine’s success in the game reflects the machine’s inherent talent.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>We follow the view that the imitation game is not about the machine’s talent but about the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>talent of the designer of the machine who ‘trained it’ to play the role of A.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>The above interpretation is consistent with Kasparov’s description of his chess<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>game with Deep Blue. According to him, he lost because he failed to foresee that after the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>first match (which he won) the computer was rebuilt and reprogrammed to play positional<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>chess. So Kasparov opened with the wrong strategy, thus losing because of wrong decisionmaking<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>not in chess but in predicting the intentions of his human opponents (he wrongly<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>assumed that computer designing still hasn’t reached the level of playing positional chess).<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Thus he lost because he underestimated his opponents. The ability to properly evaluate self<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>intelligence in comparison to that of others is an essential feature of natural intelligence. It<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>illustrates that humans with higher analytical skills can have lower skills associated with<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>natural intelligence and vice versa: the large team that designed and programmed Deep Blue<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>properly evaluated Kasparov’s superior talent relative to that of each one of them on its own.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>21<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>So, before the second match, they extended their team. Bacteria, being the most primordial<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>organisms, had to adopt a similar strategy to survive when higher organisms evolved. The<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>“Bacterial Wisdom” principle [9,47], is that proper cooperation of individuals driven by a<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>common goal can generate a new group-self with superior collective intelligence. However,<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>the formation of such a collective self requires that each of the individuals will be able to<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>alter its own self and adapt it to that of the group’s (Appendix A).<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Information-Based Artificial Intelligence vs.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Meaning-Based Natural Intelligence<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>We propose to associate (vs. define) meaning-based, natural intelligence with: conduction of<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>semantic and pragmatic communication, assignment and generation of meaning, formation of<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>self-identity (distinction between intrinsic and extrinsic meaning) and of associated identity<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>(i.e., of the group the individual belongs to), identification of natural intelligence in other<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>organisms, intentional behavior, decision-making and intentionally designed self alterations.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Below we explain why this features are not likely to be sustained by a universal Turing<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>machine, irrespective of how advanced its information-based artificial intelligence might be.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Turing set his original imitation game to be played by machine rules: 1. The selfidentities<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>are not allowed to be altered during the game. So, for example, the cooperators can<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>not alter together their associated identity - the strategy bacteria adopt to identify defectors. 2.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>The players use fixed-in-time, universal-machine-like language (no semantic and pragmatic<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>aspects). In contrast, the strategy bacteria use is to modify their dialect to improve the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>semantic and pragmatic aspect of their communication. 3. The efficiency of playing the game<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>has no causal drive, i.e., there is no reward or punishment. 4. The time frame within which<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>the game is to be played is not specified. As a result, there is inherent inconsistency in the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>way Turing formulated his imitation game, and the game can not let the special features of<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>natural intelligence be expressed.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>As Turing proved, computing machines are equivalent to formal axiomatic systems<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>that are constructed to be clean of meaning. Hence, by definition, no computer can generate<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>its own intrinsic meanings that are distinguishable from externally imposed ones. Which, in<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>turn, implies the obvious – computers can not have inherent notions of identity and self22<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>identity. So, if the statement: ‘When a machine takes the part of A in this game’ refers to the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>machine as an independent player, the game has to be either inconsistent or undecidable. By<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>independent player we mean the use of some general-purpose machine (i.e., designed without<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>specific task in mind, which is analogous to the construction of a meaning-free, formal<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>axiomatic system). The other possibility is that Turing had in mind a specific machine,<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>specially prepared for the specific game with the specific players in mind. In this case, the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>formulation of the game has no inconsistency/undecidability, but then the game is about the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>meaning-based, causality-driven creativity of the designer of the machine and not about the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>machine itself. Therefore, we propose to interpret the statement ‘When a machine takes the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>part of A’ as implying that ‘A sends a Pre-designed and Pre-programmed machine to play<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>his role in the specific game’.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>The performance of a specific machine in a specific game is information-based<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Artificial Intelligence. The machine can even perform better than some humans in the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>specific game with agreed-upon, fixed rules (time invariant); it has been designed to play.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>However, the machine is the product of the meaning-based Natural Intelligence and the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>causality-driven creativity of its designer. The designer can design different machines<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>according to the causal needs he foresees. Moreover, by learning from his experience and by<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>using purposefully gathered knowledge, he can improve his skills to create better machines.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>It seems that Turing did realize the essential differences between some of the features<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>we associate here with Natural Intelligence vs. Artificial Intelligence. So, for example, he<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>wouldn’t have classified Deep Blue as an Intelligent Machine. In an unpublished report from<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>1948, entitled “Intelligent Machinery”, machine intelligence is discussed mainly from the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>perspective of human intelligence. In this report, Turing explains that intelligence requires<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>learning, which in turn requires the machine to have sufficient flexibility, including selfalteration<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>capabilities (the equivalent of today’s neuro-plasticity). It is further implied that<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>the machine should have the freedom to make mistakes. The importance of reward and<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>punishment in the machine learning is emphasized (see the report summary shown below).<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Turing also relates the machine’s learning capabilities to what today would be referred to as<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>genetic algorithm, one which would fit the recent realizations about the genome (Appendix<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>F).<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>In this regard, we point out that organisms’ decision-making and creativity which are<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>based on learning from experience (explained below) must involve learning from past<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>23<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>mistakes. Hence, an inseparable feature of natural intelligence is the freedom to err with<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>readiness to bear the consequences.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Beyond Machinery - Games of Natural Intelligence<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Since the rules of Turing’s imitation game do not let the special features of natural<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>intelligence be expressed the game can not be used to distinguish natural from artificial<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>intelligence. The rules of the game must be modified to let the features of natural intelligence<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>be expressed, but in a manner machines can technically imitate.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>First, several kinds of communication channels that can allow exchange of<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>meaning-bearing messages should be included, in addition to the written messages. Clearly,<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>all communication channels should be such that can be transferred and synthesized by a<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>machine; speech, music, pictures and physiological information (like that used in polygraph<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>tests) are some examples of such channels. We emphasize that a two-way communication is<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>used so, for example, the examiner (I) can present to (B) a picture he asked (A) to draw and<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>vice versa. Second, the game should be set to test the ability of human (I) vs. machine (I) to<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>make correct identification of (A) and (B), instead of testing the ability of human (A) vs.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>machine (A) to cause human (I) false identifications. Third, the game should start after the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>24<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>examiner (I) has had a training period. Namely, a period of time during which he is let to<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>communicate with (A) and (B) knowing who is who, to learn from his own experience about<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>their identities. Both the training period and the game itself should be for a specified<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>duration, say an hour each. The training period can be used by the examiners in various<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>ways; for example, he can expose the players to pictures, music pieces, extracts from<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>literature, and ask them to describe their impressions and feelings. He can also ask each of<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>them to reflect on the response of the other one or explain his own response. Another<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>efficient training can be to ask each player to create his own art piece and reflect on the one<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>created by the other. The training period can also be used by the examiner (I) to train (B) in<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>new games. For example, he could teach the other players a new game with built-in rewards<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>for the three of them to play. What we suggest is a way to instill in the imitation game<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>intrinsic meaning for the player by reward and decision-making.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>The game can be played to test the ability of machine (I) vs. human (I) to<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>distinguish correctly between various kinds of identities: machine vs. human (in this case, the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>machine should be identical to the one who plays the examiner), or two associated human<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>identities (like gender, age, profession etc).<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>The above are examples of natural intelligence games we expect machinery to<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>lose, and as such they can provide proper tests to distinguish their artificial intelligence from<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>the natural intelligence of living systems.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Let Bacteria Play the Game of Natural Intelligence<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>We proposed that even bacteria have natural intelligence beyond machinery: unlike a<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>machine, a bacterial colony can improve itself by alteration of gene expression, cell<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>differentiation and even generation of new inheritable genetic ‘tools’. During colonial<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>development, bacteria collectively use inherited knowledge together with causal information<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>it gathers from the environment, including other organisms (Appendix A). For that, semantic<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>chemical messages are used by the bacteria to conduct dialogue, to cooperatively assess their<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>situation and make contextual decisions accordingly for better colonial adaptability<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>(Appendix B). Should these notions be understood as useful metaphors or as disregarded<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>reality?<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>25<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Another example of natural intelligence game could be a Bridge game between a<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>machine and human team playing the game against a team of two human players. This<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>version of the game is similar to the real life survival ‘game’ between cooperators and<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>cheaters (cooperative behavior of organisms goes hand in hand with cheating, i.e., selfish<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>individuals who take advantage of the cooperative effort). An efficient way cooperators can<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>single out the defectors is by using their natural intelligence - semantic and pragmatic<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>communication for collective alteration of their own identity, to outsmart the cheaters who<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>use their own natural intelligence for imitating the identity of the cooperators [111-114].<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>In Appendix A we describe how even bacteria use communication to generate<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>evolvable self-identity together with special “dialect”, so fellow bacteria can find each one in<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>the crowd of strangers (e.g., biofilms of different colonies of the same and different species).<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>For that, they use semantic chemical messages that can initiate specific alteration only with<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>fellow bacteria and with shared common knowledge (Appendix C). So in the presence of<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>defectors they modify their self-identity in a way unpredictable to an external observer not<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>having the same genome and specific gene-expression state. The external observer can be<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>other microorganisms, our immune system or our scientific tools.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>The experimental challenge to demonstrate the above notions is to devise an identity<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>game bacteria can play to test if bacteria can conduct a dialogue to recognize self vs. non-self<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[111-114]. Inspired by Turing’s imitation game, we adopted a new conceptual methodology<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>to let the bacteria tell us about their self-identity, which indeed they do: Bacterial colonies<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>from the same culture are grown under the same growth conditions to show that they exhibit<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>similar-looking patterns (Fig 1), as is observed during self-organization of azoic systems<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[7,8,99,100]. However, unlike for azoic systems, each of the colonies develops its own self<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>identity in a manner no azoic system is expected to do.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>26<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Fig 1. Observed level of reproducibility during colonial developments: Growth of two<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>colonies of the Paenibacillus vortex taken from the same parent colony and under the same growth conditions.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>For that, the next stage is to growth of four colonies on the same plate. In one case all are<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>taken from the same parent colony and in the other case they are taken from two different yet<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>similar-looking colonies (like those shown in Fig 1). In preliminary experiments we found<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>that the growth patterns in the two cases are significantly different. These observations imply<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>that the colonies can recognize if the other colonies came from the same parent colony or<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>from a different one. We emphasize that this is a collective phenomenon, and if the bacteria<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>taken from the parent colonies are first grown as isolated bacteria in fluid, the effect is<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>washed out.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>It has been proposed that such colonial self-identity might be generated during the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>several hours of stationary ‘embryonic stage’ or collective training duration of the colonies<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>between the time they are placed on the new surface and start to expand. During this<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>duration, they collectively generate their own specific colonial self identity [62,63]. These<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>findings revive Schrödinger’s dilemma, about the conversion of genetic information<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>(embedded in structural coding) into a functioning organism. A dilemma largely assumed to<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>be obsolete in light of the new experimental findings in life sciences when combined with the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Neo-Darwinian the Adaptive Complex Systems paradigms [51,115-120]. The latter, currently<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>the dominant paradigm in the science of complexity is based on the ‘top-level emergence’<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>principle which has evolved from Anderson’s constructivism (‘More is Different’ [53]).<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>27<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Beyond Neo-Darwinism – Symbiogenesis on All Levels<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Accordingly it is now largely assumed that all aspects of life can in principle be explained<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>solely on the basis of information storage in the structure of the genetic material. Hence, an<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>individual bacterium, bacterial colony or any eukaryotic organism is in principle analogous<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>to a pre-designed Turing machine. In this analogy, the environment provides energy (electric<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>power of the computer) and absorbs the metabolic waste products (the dissipated heat), and<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>the DNA is the program that runs on the machine. Unlike in an ordinary Turing machine, the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>program also has instructions for the machine to duplicate and disassemble itself and<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>assemble many machines into an advanced machine – the dominant Top-Level Emergence<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>view in the studies of complex systems and system-biology based on the Neo-Darwinian<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>paradigm.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>However, recent observations during bacterial cooperative self-organization show features<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>that can not be explained by this picture (Appendix A). Ben Jacob reasoned that Anderson’s<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>constructivism is insufficient to explain bacterial self-organization. Hence, it should be<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>extended to a “More is Different on All Levels” or all-level generativism [9]. The idea is that<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>biotic self-organization involves self-organization and contextual alteration of the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>constituents of the biotic system on all levels (down to the genome). The alterations are based<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>on stored information, external information, information processing and collective decisionmaking<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>following semantic and pragmatic communication on all levels. Intentional<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>alterations (neither pre-designed nor due to random changes) are possible, however, only if<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>they are performed on all levels. Unlike the Neo-Darwinian based, top-level emergence, alllevel<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>emergence can account for the features associated with natural intelligence. For<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>example, in the colony, communication allows collective alterations of the intracellular state<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>of the individual bacteria, including the genome, the intracellular gel and the membrane. For<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>bacterial colony as an organism, all-level generativism requires collective ‘natural genetic<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>engineering’ together with ‘creative genomic webs’ [45-47]. In a manuscript entitled:<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>“Bacterial wisdom, Gödel’s theorem and Creative Genomic Webs”, Ben Jacob refers to the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>following special genomic abilities of individual bacteria when being the building agents of a<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>colony.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>28<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>In the prologue we quoted Margulis’ and Sagan’s criticisms of the incompleteness of the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Neo-Darwinian paradigm and the crucial role of symbiogenesis in the transition from<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>prokaryotes to eukaryotes and the evolution of the latter. With regard to eukaryotic<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>organisms, an additional major difficulty arises from the notion that all the required<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>information to sustain the life of the organism is embedded in the structure of its genetic<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>code: this information seems useless without the surrounding cellular machinery [123,124].<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>While the structural coding contains basic instructions on how to prepare many components<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>of the machinery – namely, proteins – it is unlikely to contain full instructions on how to<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>assemble them into multi-molecular structures to create a functional cell. We mentioned<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>mitochondria that carry their own genetic code. In addition, membranes, for example, contain<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>lipids, which are not internally coded but are absorbed from food intake according to the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>functional state of the organism.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Thus, we are back to Schrödinger’s chicken-and-egg paradox – the coding parts of the DNA<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>require pre-existing proteins to create new proteins and to make them functional. The<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>problem may be conceptually related to Russell’s self-reference paradoxes and Gödel’s<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>theorems: it is possible in principle to construct mapping between the genetic information<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>and statements about the genetic information. Hence, according to a proper version of<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Gödel’s theorem (for finite system [47]), the structural coding can not be both complete and<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>self-consistent for the organism to live, replicate and have programmed cell death. In this<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>sense, the Neo-Darwinian paradigm can not be both self-consistent and complete to describe<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>29<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>the organism’s lifecycle. In other words, within this paradigm, the transition from the coding<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>part of the DNA to the construction of a functioning organism is metaphorically like the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>construction of mathematics from a formal axiomatic system. This logical difficulty is<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>discussed by Winfree [125] in his review on Delbruck’s book “Mind from Matter? An Essay<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>on Evolutionary Epistemology”.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>30<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>New discoveries about the role of transposable elements and the abilities of the Junk DNA to<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>alter the genome (including generation of new genes) during the organism’s lifecycle support<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>the new picture proposed in the above mentioned paper. So, it seems more likely now that<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>indeed the Junk DNA and transposable elements provide the necessary mechanisms for the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>formation of creative genomic webs. The human genome project provided additional clues<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>about the functioning of the genome, and in particular the Junk DNA in light of the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>unexpectedly low number of coding genes together with equally unexpectedly high numbers<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>of transposable elements, as described in Appendix B. These new findings on the genomic<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>level together with the new understanding about the roles played by mitochondria [126-132]<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>imply that the current Neo-Darwinian paradigm should be questioned. Could it be that<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>mitochondria – the intelligent intracellular bacterial colonies in eukaryotic cells, provide a<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>manifestation of symbiogenesis on all levels?<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Learning from Experience –<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Harnessing the Past to Free the Future<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Back to bacteria, the colony as a whole and each of the individual bacteria are continuously<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>self-organized open systems: The colonial self-organization is coupled to the internal selforganization<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>process each of the individual bacteria. Three intermingled elements are<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>involved in the internal process: 1. genetic components, including the chromosomal genetic<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>sequences and additional free genetic elements like transposons and plasmids. 2. the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>31<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>membrane, including the integrated proteins and attached networks of proteins, etc. 3. The<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>intracellular gel, including the machinery required to change its composition, to reorganize<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>the genetic components, to reorganize the membrane, to exchange matter, energy and<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>information with the surrounding, etc. In addition, we specifically follow the assumption that<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>usable information can be stored in its internal state of spatio-temporal structures and<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>functional correlations. The internal state can be self-altered, for example via alterations of<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>the part of the genetic sequences which store information about transcription control. Hence,<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>the combination of the genome and the intra-cellular gel is a system with self reference.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Hence, the following features of genome cybernetics [9,50] can be sustained.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>1. storage of past external information and its contextual internal interpretation.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>2. storage of past information about the system’s past selected and possible states.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>3. hybrid digital-analog processing of information.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>4. hybrid hardware-software processing of information.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>The idea is that the hardware can be self-altered according to the needs and outcome of the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>information processing, and part of the software is stored in the structure of the hardware<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>itself, which can be self-altered, so the software can have self reference and change itself.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Such mechanisms may take a variety of different forms. The simplest possibility is by<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>ordinary genome regulation – the state of gene expression and communication-based<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>collective gene expression of many organisms. For eukaryotes, the mitochondria acting like a<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>bacterial colony can allow such collective gene expression of their own independent genes.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>In this regard, it is interesting to note that about 2/3 of the mitochondria’s genetic material is<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>not coding for proteins.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Genome cybernetics has been proposed to explain the reconstruction of the coding DNA<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>nucleus in ciliates [133,134]. The specific strains studied have two nuclei, one that contains<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>only DNA coded for proteins and one only non-coding DNA. Upon replication, the coding<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>nucleus disintegrates and the non-coding is replicated. After replication, the non-coding<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>nucleus builds a new coding nucleus. It has been shown that it is done using the transposable<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>elements in a computational process.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>More recent work shows that transposable elements can effectively re-program the genome<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>between replications [135]. In yeast, these elements can insert themselves into messenger<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>32<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>RNA and give rise to new proteins without eliminating old ones[136]. These findings<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>illustrate that rather than wait for mutations to occur randomly, cells can apparently keep<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>some genetic variation on tap and move them to ‘hard disk’ storage in the coding part of the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>DNA if they turn out to be beneficial over several life cycles. Some observations hint that the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>collective intelligence of the intracellular mitochondrial colonies play a crucial role in these<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>processes of self-improvement [128-132].<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Here, we further assume the existence of the following features:<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>5. storage of the information and the knowledge explicitly in its internal spatiotemporal<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>structural organizations.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>6. storage of the information and the knowledge implicitly in functional organizations<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>(composons) in its corresponding high dimensional space of affinities.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>7. continuous generation of models of itself by reflection forward (in the space of<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>affinities) its stored knowledge.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>The idea of high dimensional space of affinities (renormalized correlations) has been<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>developed by Baruchi and Ben Jacob [137], for analyzing multi-channel recorded activity<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>(from gene expression to human cortex). They have shown the coexistence of functional<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>composons (functional sub-networks) in the space of affinities for recorded brain activity.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>With this picture in mind, the system’s models of itself are not necessarily<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>dedicated ‘units’ of the system in the real space but in the space of affinities, so the models<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>should be understood as a caricature of the system in real space including themselves -<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>caricature in the sense that maximal meaningful information is represented. In addition, the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>system’s hierarchical organization enables the smaller scales to contain information about the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>larger scale they themselves form – metaphorically, like the formation of meanings of words<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>in sentences as we explain in Appendix B. The larger scale, the analog of the sentence and<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>the reader’s previous knowledge, selects between the possible lower scale organizations. The<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>system’s real time is represented in the models by a faster internal time, so at every moment<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>in real time the system has information about possible caricatures of itself at later times.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>33<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>The reason that internal multiple composons (that serve as models) can coexist has to do<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>with the fact that going backward in time is undecidable for external observer (e.g., solving<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>backward reaction-diffusion equations is undetermined). So what we suggest is that, by<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>projecting the internally stored information about the past (which can not be reconstruct by<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>external observer), living organisms utilize the fact that going backward in time is<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>undetermined for regulated freedom of response: to have a range of possible courses of future<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>behavior from which they have the freedom to select intentionally according to their past<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>experience, present circumstances, and inherent predictions of the future. In contrast, the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>fundamental assumption in the studies of complex adaptive systems according to Gell-Mann<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[115], is that the behavior of organisms is determined by accumulations of accidents.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Any entity in the world around us, such as an individual human being, owes its<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>existence not only to the simple fundamental law of physics and the boundary condition<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>on the early universe but also to the outcomes of an inconceivably long sequence of<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>probabilistic events, each of which could have turned out differently. Now a great many<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>of those accidents, for instance most cases of the bouncing of a particular molecule in a<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>gas to the right rather than the left in a molecular collision, have few ramifications for<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>the future coarse-grained histories. Sometimes, however, an accident can have<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>widespread consequences for the future, although those are typically restricted to<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>particular regions of space and time. Such a "frozen accident" produces a great deal of<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>mutual algorithmic information among various parts or aspects of a future coarsegrained<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>history of the universe, for many such histories and for various ways of<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>dividing them up.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>We propose that organisms use stored relevant information to generate an internal<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>mixed yet decomposable (separable) state of multiple options analogous to quantum<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>mechanical superposition of states .In this sense the process of decision-making to select a<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>specific response to external stimuli is conceptually like the projection of the wave function<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>in quantum mechanical measurement. There are two fundamental differences, though: 1. In<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>quantum measurement, the external observer directly causes the collapse of the system on a<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>specific eigenstate he pre-selects. Namely, the eigenstate is predetermined while its<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>corresponding eigenvalue is not. In the organism’s decision-making, the external stimuli<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>initiate the selection of a specific state (collapse on a specific response). The selected state is<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>in principle unknown directly to an external observer. The initiated internal decomposition of<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>the mixed states and the selection of a specific one are performed according to stored past<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>information. 2. In quantum measurement, the previous possible (expected) eigenvalues of the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>other eigenstates are erased and assigned new uncertainties. In the organism’s decision<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>34<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>making the process is qualitatively different: the external stimuli initiate decomposition of<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>the mixed states by the organism itself. The information about the other available options is<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>stored after the selection of the specific response. Therefore, the unselected past options are<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>expected to affect consequent decision-making.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Decomposable Mixed State of Multiple-Options –<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>A Metaphor or Testable Reality?<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>The above picture is rejected on the grounds that in principle the existence of a mixed and<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>decomposable state of multiple options can not be tested experimentally. In this sense, the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>objection is similar in spirit to the objections to the existence of the choice function in<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>mathematics (Appendix D), and the wave function in physics (Appendix E).<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>The current experimental methodology in life science (disintegrating the organism<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>or exposing it to lethal stress), is conceptually similar to the notion of ”strong measurements”<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>or “destructive measurements” in quantum mechanics in which the wave function is forced to<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>collapse. Therefore, the existence of an internal state decomposable only by the organism<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>itself can not be tested by that approach. A new conceptual methodology is required, of<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>protective biotic measurements. For example, biofluoremetry can be used to measure the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>intracellular spatio-temporal organization and functional correlations in a living organism<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>exposed to weak stress. Conceptually, fluoremetry is similar to quantum non-demolition and<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>weak stress is similar to the notion of weak quantum measurements. Both allow the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>measurement of the quantum state of a system without forcing the wave function to collapse.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Bacterial collective learning when exposed to non-lethal levels of antibiotics provide an<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>example of protective biotic measurements (Appendix E).<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>35<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Fig 2. Confocal image of mitochondria within a single cultured rat cortical astrocyte<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>stained with the calcium-sensitive dye rhod-2 which partitions into mitochondria, permitting<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>direct measurements of intramitochondrial calciuum concentration (curtsey of Michael<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Duchen).<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>It should be kept in mind that the conceptual analogy with quantum mechanics is subtle and<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>can be deceiving rather than inspiring if not properly used. For clarification, let us consider<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>the two-slit experiment for electrons. When the external observer measures through which of<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>the slits the electron passes, the interference pattern is washed out - the measurement causes<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>the wave function of the incoming electron to collapse on one of the two otherwise available<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>states.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Imagine now an equivalent two-slit experiment for organisms. In this thought<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>experiment, the organisms arrive at a wall with two closely located narrow open gates.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Behind the wall there are many bowls of food placed along an arc so that they are all at equal<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>distance from the gates. The organisms first choose through which of the two gates to pass<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>and then select one bowl of food. The experiment is performed with many organisms, and the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>combined decisions are presented in a histogram of the selected bowls. In the control<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>experiment, two independent histograms are measured, for each door separately (no decisionmaking<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>is required). The distribution when the two gates are open is compared with the sum<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>of the distributions for the single gates. A statistically significant difference will indicate that<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>past unselected options can influence consequent decision-making even if the following<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>decision involves a different choice altogether (gates vs. food bowls).<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>36<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Upon completion of this monograph, the development of a Robot-Scientist has just been<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>reported [138]. The machine was given the problem of discovering the function of different<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>genes in yeast, to demonstrate its ability to generate a set of hypotheses from what is known<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>about biochemistry and then design experiments and interpret the results (assign meaning)<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>without human help. Does this development provide the ultimate proof that there is no<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>distinction between Artificial Intelligence and Natural Intelligence? Obviously, advanced<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>automated technology interfaced with learning software can have important contribution. It<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>may replace human researchers from doing what machines can do, thus freeing them to be<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>more creative and to devote more effort to their beyond-machinery thinking. We don’t<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>expect, however, that a robot scientist will be able to design experiments to test, for example,<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>self-identity and decision-making, for the simple reason that it could not grasp these<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>concepts.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Epilogue – From Bacteria Shalt Thou Learn<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Mutations as the causal driving force for the emergence of the diversity and complexity of<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>organisms and biosystems became the most fundamental principle in life sciences ever since<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Darwin gave mutations a key role in natural selection.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Consequently, research in life sciences has been guided by the assumption that the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>complexity of life can become comprehensible if we accumulate sufficient amounts of<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>detailed information. The information is to be deciphered with the aid of advanced<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>mathematical method within the Neo-Darwinian schemata. To quote Gell-Mann,<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Life can perfectly well emerge from the laws of physics plus accidents, and mind, from<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>neurobiology. It is not necessary to assume additional mechanisms or hidden causes.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Once emergence is considered, a huge burden is lifted from the inquiring mind. We don't<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>need something more in order to get something more.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>This quote represents the currently, dominant view of life as a unique physical phenomenon<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>that began as a colossal accident, and continues to evolve via sequences of accidents selected<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>by random number generators – the omnipotent idols of science. We reason that, according to<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>37<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>this top-level emergence picture, organisms could not have evolved to have meaning-based,<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>natural intelligence beyond that of machinery.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Interestingly, Darwin himself didn’t consider mutations to be necessarily random, and<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>thought the environment can trigger adaptive changes in organisms – a notion associated<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>with Lamarckism. Darwin did comment, however, that it is reasonable to treat alterations as<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>random, so long as we do not know their origin. He says:<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>“I have hitherto sometimes spoken as if the variations were due to chance. This, of<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>course, is a wholly incorrect expression, but it serves to acknowledge plainly our<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>ignorance of the cause of each particular variation… lead to the conclusion that<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>variability is generally related to the conditions of life to which each species has been<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>exposed during several successive generations”.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>In 1943, Luria and Delbruck performed a cornerstone experiment to prove that random<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>mutation exist by exposing bacteria to lethal conditions – bacteriophage that immediately<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>kills non-resistant bacteria. Therefore, only cells with pre-existing specific mutations could<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>survive. The other cells with didn’t have the chance to alter their self - a possibility that could<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>not be ruled out by the experiments. Nevertheless, these experiments were taken as a crucial<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>support for the Neo-Darwinian dogma which states that all mutations are random, and can<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>occur only during DNA replication. To bridge between these experiments, Turing’s imitation<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>game and the notion of weak measurements in quantum mechanics, we suggest to test natural<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>intelligence by first giving the organisms a chance to learn from hard but non-lethal<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>conditions. We also proposed to let the bacteria play identity game proper for testing their<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>natural intelligence, similar in spirit to the real life games played between different colonies<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>and even with other organisms [139].<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>In Turing’s footsteps, we propose to play his imitation game with the reverse goal in<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>mind. Namely, human players participate in the game to learn about themselves. By playing<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>this reverse game with bacteria, - Nature’s fundamental organisms from which all life<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>emerged - we should be able to learn about the very essence of our self. This is especially so<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>when keeping in mind that the life, death and well being of each of our cells depend on the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>cooperation of its own intelligent bacterial colony – the mitochondria. Specifically, we<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>believe that understanding bacterial natural intelligence as manifested in mitochondria might<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>be crucial for understanding the meaning-based natural intelligence of the immune system<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>38<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>and the central nervous system, the two intelligent systems we use for interacting with other<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>organisms in the game of life. Indeed, it has recently been demonstrated that mice with<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>identical nuclear genomes can have very different cognitive functioning if they do not have<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>the same mitochondria in their cytoplasm. The mitochondria are not transferred with the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>nucleus during cloning procedures [140].<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>To quote Schrödinger,<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Democritus introduces the intellect having an argument with the senses about what is<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>'real'. The intellect says; 'Ostensibly there is color, ostensibly sweetness, ostensibly<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>bitterness, actually only atoms and the void.' To which the senses retort; 'Poor intellect,<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>do you hope to defeat us while from us you borrow your evidence? Your victory is your<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>defeat.'<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Acknowledgment<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>We thank Ben Jacob’s student, Itay Baruchi, for many conversations about the potential<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>implications of the space of affinities, the concept he and Eshel have recently developed<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>together. Some of the ideas about bacterial self-organization and collective intelligence were<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>developed in collaboration with Herbert Levine. We benefited from enlightening<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>conversations, insights and comments by Michal Ben-Jacob, Howard Bloom, Joel Isaacson,<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Yuval Neeman and Alfred Tauber. The conceptual ideas could be converted into concrete<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>observations thanks to the devoted and precise work of Inna Brainis. This work was<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>supported in part by the Maguy-Glass Chair in Physics of Complex Systems.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Personal Thanks by Eshel Ben-Jacob<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>About twenty-five years ago, when I was a physics graduate student, I read the book “The<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Myth of Tantalus” and discovered there a new world of ideas. I went to seek the author, and<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>found a special person with vast knowledge and human approach. Our dialogue led to the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>establishment of a unique, multidisciplinary seminar, where themes like “the origin of<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>creativity” and “mind and matter” were discussed from different perspectives. Some of the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>questions have remained with me ever since, and are discussed in this monograph.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>39<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Over the years I have had illuminating dialogues with my teacher Yakir Aharonov about the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>foundations of quantum mechanics and with my friend Adam Tenenbaum about logic and<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>philosophy.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>In my Post-Doctoral years, I was very fortunate to meet the late Uri Merry, who introduced<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>me to the world of social science and linguistics and to Buber’s philosophy. Among other<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>things, we discussed the role of semantic and pragmatic communication in the emergence of<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>individual and group self.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>References<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[1] Schrödinger, E. (1943) What is life? The Physical Aspect of the Living Cell. Based on<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>lectures delivered under the auspices of the Dublin Institute for Advanced Studies at Trinity<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>College, Dublin, in February 1943. home.att.net/~p.caimi/Life.doc ; (1944) What is life?<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>The Physical Aspect of the Living Cel Cambridge University Press. (1958) Mind and Matter.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Cambridge University Press, Cambridge. (1992) What Is Life? The Physical Aspect of the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Living Cell with Mind and Matter and Autobiographical Sketches with forward by R.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Penrose<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[2] Delbrück, M. (1946) Heredity and variations in microorganisms. Cold Spring Harbor<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Symp. Quant. Biol., 11 ; Delbruck, M. (1986) Mind from Matter? An Essay on Evolutionary<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Epistemology Blackwell Scientific Publication<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[3]Winfree,A. T. (1988) Book review on Mind from Matter? An Essay on Evolutionary<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Epistemology Bul. Math. Biol 50, 193-207<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[4] Hemmer, P.C., Holden, H. and ratkje, S.K. (1996) The Collected Work of Lars Onsager<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>World Scientific<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[5] Prigogine, I. and Nicolis, G. (1977) Self-organization in NonEequlibrium Systems;From<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Dissipative Structures to Order through Fluctuations Wiley&Sons Prigogine, I. (1980)<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>From Being to Becoming: Time and Complexity in the Physical Sciences H. Freeman&Co<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[6] Cross, M.C. and Hohenberg, P.C. (1993) Pattern formation outside of equilibrium , Rev.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Mod. Phys. 65<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[7] Ben Jacob, and Garik, P. (1990) The formation of patterns in non-equilibrium growth<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Nature 33 523-530<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[8] Ben Jacob, E. (1993) From snowflake formation to growth of bacterial colonies. I.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Diffusive patterning in azoic systems Contemp Physics 34 247-273 ; (1997) II. Cooperative<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>formation of complex colonial patterns Contem. Physics 38 205-241<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>40<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[9] Ben-Jacob, E. (2003) Bacterial self-organization: co-enhancement of complexification<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>and adaptability in a dynamic environment. Phil. Trans. R. Soc. Lond. A361,1283-1312<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[10] Schweitzer, F. (1997) Self-Organization of Complex Structures from Individual to<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Collective Dynamics Gordon&Breach<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[11] Ball, P. (1999) The Self-Made Tapestry: Pattern Formation in Nature Oxford University<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Press<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[12] Camazine, S. et al (2001) Self-Organization in Biological Systems Princeton University<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Press<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[13] Turing, A.M. (1952) The Chemical Basis of Morphogenesis, Philosophical Transactions<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>of the Royal Society B (London), 237, 37-72, 1952.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[14] Saunders, P.T. (1992) Morphogenesis: Collected Works of AM Turing Vol 3 of Furbank,<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>P.N. (1992) The Collected Work of A. M. Turing North Holand Pulications<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[15] Turing, A.M. Unpublished material Turing archive at King's College Cambridge, and<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>the Manchester National Archive for the History of Computing<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[16]Lovelock, James. 1995. Gaia: A New Look at Life on Earth. Oxford University Press:<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Oxford.Lovelock, James. 1988. The Ages of Gaia: A Biography of Our Living Earth. New<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>York: W.W. Norton.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[17] Margulies, L. and Dolan, M.F. (2002) Early life, Jones and Bartlett ; (1998) Five<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Kingdoms ; (2002) Early Life: Evolution on the Precambrian Earth (with Dolan, M. F.) ;<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>(1997) Microcosmos; Four Billion Years of Evolution from Our Microbial Ancestors (with<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Sagan, D.)<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[18] Sahtouris, E. (2001) What Our Human Genome Tell Us? EcoISP ; Sahtouris, Elisabet,<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>with Swimme, Brian and Liebes, Sid. (1998) A Walk Through Time: From Stardust to Us.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Wiley: New York.; Harman, Willis and Sahtouris, Elisabet. 1998. Biology Revisioned. North<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Atlantic Books: Berkeley, CA.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>41<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[19]E. Ben-Jacob, I. Cohen, H. Levine, Cooperative self-organization of microorganisms,<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Adv. Phys. 49 (2000) 395-554<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[20]Microbiology: A human perspective E.W. Nester, D.G. Anderson, C.E. Roberts, N.N<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Pearsall, M.T. Nester, (3rd Edition), McGraw Hill, New York 2001;<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[21]Shapiro, J.A. and Dworkin, M. (Eds.), (1997) Bacteria as Multicellular Organisms<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Oxford University Press, New York<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[22]Shapiro, J.A. (1988) Bacteria as multicellular organisms, Sci. Am. 258 62-69; J.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Shapiro, J.A. (1995) The significance of bacterial colony patterns, BioEssays, 17 597-<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>607. Shapiro, J.A. (1998) Thinking about bacterial populations as multicellular<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>organisms, Annu. Rev. Microbiol. 52 81-104<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[23] Losick, R. and Kaiser, D. (1997) Why and how bacteria communicate, Sci. Am. 276 68-<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>73; Losick, R. and Kaiser, D. (1993) How and Why Bacteria talk to each other, Cell 73<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>873-887<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[24]Ben-Jacob, E., Cohen, I. and Gutnick, D.L. (1998) Cooperative organization of bacterial<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>colonies: From genotype to morphotype. Annu. Rev. Microbiol., 52 779-806<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[25] Rosenberg, E. (Ed.), (1999) Microbial Ecology and Infectious Disease, ASM Press<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[26] Crespi, B.J. (2001) The evolution of social behaviour in microorganisms. TrendsEcol.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Evol. 16, 178-183<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[27] Kolenbrander, P.E. et al (2002) Communication among oral bacteria. Microbiol. Mol.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Biol. Rev. 66, 486-505<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[28] Ben-Jacob, E. et al. (1994) Generic modeling of cooperative growth patterns in<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>bacterial colonies. Nature 368, 46-49<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[29] Matsushita, M. and Fujikawa, H. (1990) Diffusion-limited growth in bacterial colony<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>formation. Physica A 168, 498-506<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[30] Ohgiwari, M. et al. (1992) Morphological changes in growth of bacterial colony<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>patterns. J. Phys. Soc. Jpn. 61, 816-822<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[31] Komoto, A. et al (2003) Growth dynamics of Bacillus circulans colony. J. Theo. Biology<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>225, 91-97<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[32] Di Franco, C. et al. (2002) Colony shape as a genetic trait in the pattern-forming<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Bacillus mycoides. BMC Microbiol 2(1):33<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[33]Ben-Jacob, E., Cohen, I. and A. Czirók. (1997) Smart bacterial colonies. In Physics of<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Biological Systems: From Molecules to Species, Lecture Notes in Physics, pages 307-324.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Springer-Verlag, Berlin,<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>42<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[34]Ben-Jacob, E. et al. (1995) Complex bacterial patterns. Nature, 373:566-567,<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[35]Budrene, E.O. and Berg, H.C. (1991) Complex patterns formed by motile cells of<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Esherichia coli. Nature, 349:630-633 ; (1995) Dynamics of formation of symmetrical<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>patterns by chemotactic bacteria. Nature, 376:49-53<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[36]Blat, Y.and Eisenbach, M. (1995). Tar-dependent and -independent pattern formation by<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Salmonella typhimurium . J. Bac., 177(7):1683-1691<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[37] S. E. Luria and M. Delbrück. Mutations of bacteria from virus sensitivity to virus<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>resistance. Genetics, 28:491-511, 1943.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[38] Dawkins, R. (1986) The Blind Watchmaker. W.W. Norton, New York, 1986. The<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Extended Phenotype. W.H. Freeman, Oxford, 1972. The Selfish Gene. Oxford University<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Press, Oxford, 1976.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[39]Gould, S. J. (1977) Ever Since Darwin. W.W. Norton, New York<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[40]Jacob, J. (1993) The Logic of Life, A History of Heredity. Princeton University Press.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[41]Joset, F. and Guespin-Michel, J. (1993) Prokaryotic Genetics. Blackwell Scientific<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Publishing, London<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[42]Keller, E.F. (1983) A Feeling for The Organism: The Life and Work of Barbara<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>McClintock. W.H. Freeman&Company<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[43] Margulis, L. (1992) Symbiosis in Cell Evolution: Microbial Communities in the Archean<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>and Proterozoic Eons W.H. Freeman&Company ;Margulis, L., Sagan, D. and Morrison, P.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>(1997) Slanted Truths: Essays on Gaia, Symbiosis, and Evolution Copernicus Books ;<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Margulis, L. Sagan, D. (1999) Symbiotic Planet<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>A New Look At EvolutionBasic Books<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[44] Margulis, L. and Sagan, D. (2003) Acquiring Genomes: A Theory of the Origins of<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Species Perseus Publishing ; Chapman, M.J. and Margulis, L. (1998) Morphogenesis and<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>symbiogenesis Intl. Microbiol. 1 319-329<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[45] Shapiro, J.A. (1992) Natural genetic engineering in evolution. Genetica 86, 99-111<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[46]Wesson, R. (1993) Beyond Natural Selection. The MIT Press, London<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[47] Ben-Jacob, E. (1998) Bacterial wisdom, Godel’s theorem and creative genomic webs.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Physica A 248, 57-76<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[48] Duchen, M.R., Leyssens, A. and Crompton, M. (1998). Transient mitochondrial<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>depolarisations in response to focal SR calcium release in single rat cardiomyocytes., J. Cell<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Biol., 142(4), 1-14.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>43<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[49] Leyssens, A., Nowicky, A.V., Patterson, D.L., Crompton, M., and Duchen, M.R.,<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>(1996). The relationship between mitochondrial state, ATP hydrolysis, [Mg2+]i and [Ca2+]i<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>studied in isolated rat cardiomyocytes. J. Physiol., 496, 111-128<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[50] Palmer, J.D. (1997) The Mitochondrion that Time Forgot,<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Nature, 387. 454-455.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[51] Holland, J.H. (2000) Emergence from chaos to order Oxford University Press,<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[52] Kurzweil, R. (1992) The Age of Intelligent Machines MIT Press ; (2000) The Age of<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Spiritual Machines: When Computers Exceed Human Intelligence Penguin<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[53] Anderson, P. (1972) More is different Science 177, 393-396<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[54]Turing, A.M. (1948) Intelligent Machinery unpublished report.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[55]Turing, A.M. (1950) Computing machinery and intelligence Mind 59 no 236, 433-460<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[56] Siegelmann, H.T. (1995) Computation beyond the Turing machine. Science, 268:545-<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>548<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[57]Turing, A.M. (1936) On computable numbers, with an application to the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Entscheidungsproblem Proc. London. Math. Soc. 42, 230-265<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[58]Gödel, K. (1931) On Formally Undecidable Propositions of Principia Mathematica and<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Related Systems Mathematik und Physik, 38 173-198<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[59]Nagel, E. and Newman, J.R.(1958) Godel's Proof New York<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>University Press ; (1995) Godel’s Collected Work, Unpublished Essays and Lectures Oxford<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>University Press<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[60]Hofstadter, D.R. (1979) Gödel, Escher, Bach: an Eternal Golden Braid basic Books<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[61]Chaitin, G.J. (2002) Computers, Paradoxes and the foundations of mathematics<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>American Scientist March-April issue<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[62] Ben Jacob, E. et al. (2002) Bacterial cooperative organization under antibiotic stress.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Physica A 282, 247-282<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>44<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[63]Golding, I. and Ben Jacob, E. (2001) The artistry of bacterial colonies and the antibiotic<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>crisis in Coherent Structures in Complex Systems. Selected Papers of the XVII Sitges<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Conference on Statistical Mechanics. Edited by Reguera, D., Bonilla, L.L. and Rubi, J.M.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[64] Alimova. A. et al. (2003) Native Fluorescence and Excitation Spectroscopic Changes in<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Bacillus subtilis and Staphylococcus aureus Bacteria Subjected to Conditions of Starvation<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Applied Optics, 42, 4080-4087<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[65]Katz, A. et al. (2002) Noninvasive native fluorescence imaging of head and neck tumors,<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Technology in Cancer Research and Treatment, 1, 9-16<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Applied Optics, Volume 42, Issue 19, 4080-4087<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>July 2003<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[66]Deutsch, M.; Zurgil, N. and Kaufman, M. (2000) Spectroscopic Monitoring of Dynamic<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Processes in Individual Cells. In: Laser Scanning Technology. Oxford, Oxford University<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Press<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[67] Tauber, A. (1991) Organisms and the Origin of Self Durdercht Kluwer Academic<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Publishers<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[68] Tauber, A. (1994) The Immune Self: Theory or Metaphor? Cambridge University Press<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[69]Shoham, S.G. (1979) The Myth of Tantalus: scaffolding for an ontological personality<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>University of Queensland Press<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[70]Bohm, D. (1996) On Dialogue, Routledge<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[71]Merry, U. (1995) Coping with uncertainty, Praeger Publishers<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[72]Rose, S. (1976) The Conscious Brain. Vintage Books, New-York, 1976.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[73]Penrose, R. (1996) Shadows of the Mind: A Search for the Missing Science of<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Consciousness Oxford University Press ; Penrose, R. and Gardner, M. (2002) The Emperor's<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>New Mind: Concerning Computers, Minds, and the Laws of Physics Oxford University Press<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>; Penrose, R. (2000) The Large, the Small and the Human Mind (with Longair, M., Shimony,<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>A., Cartwright, N. and Hawking, S.) Cambridge University Press<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[74] Bloom, H. (2001) Global Brain John Wiley&sons<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>45<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[75] Kaufman, S. (1995) At Home in the Universe: The Search for the Laws of Self-<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Organization and Complexity Oxford University Press ; (2002) Investigations Oxford<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>University Press<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[76] Sperber D. and Wilson, D. Basil Blackwell, (1986) Relevance, Communication and<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Cognition, Basil Blackwell Oxford<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[77] Aitchison, J. and Atchison, J. (1999) Linguistics, NTC Contemporary Pub. Group.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Chicago<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[78] Grice, H.P. (1989) Studies in the Ways of Words, Academic Press, New York<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[79]Steiner, G. (1975) After Babel: Aspects of Language and Translation. Oxford University<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Press, New York.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[80] Pinker, S. (1994). The Language Instinct: How the Mind Creates Language. New York:<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>HarperCollins<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[81]Jones, S. (1993) The Language of The Genes. Flaming, Glasgow<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[82]Peng, C. K. et al. (1992)Long-range correlations in nucleotide sequences. Nature,<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>356:168-171<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[83] Mantegen, R.N. et al. (1994) Linguistic features of noncoding DNA sequences. Phys.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Rev. Lett. 73, 3169-3172<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[84] Ptashne, M. and Gann, A. (2002) Genes and signals, Cold Spring Harbor Press<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[85]. Nowak, M.A et al. (2002) Computational and evolutionary aspects of language. Nature<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>417, 611-617<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[86] Searls, D.B. (2002) The Language of genes. Nature 420, 211-217<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[87] Losick, R. and Kaiser, D. (1997) Why and how bacteria communicate. Sci. Am. 276, 68-73<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[88] Wirth, R. et al.. (1996) The Role of Pheromones in Bacterial Interactions. Trends Microbiol. 4,<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>96-103<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[89] Salmond, G.P.C. et al. (1995) The bacterial enigma: Cracking the code of cell-cell<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>communication. Mol. Microbiol. 16, 615-624<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[90] Dunny, G.M. and Winans, S.C. (1999) Cell-Cell Signaling in Bacteria, ASM Press<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[91] Shimkets, L.J. (1999) Intercellular signaling during fruiting-body development of<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Myxococcus xanthus. Annu. Rev. Microbiol. 53, 525-549<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[92] Bassler, B.L. (2002) Small talk: cell-to-cell communication in bacteria. Cell 109, 421-424<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>46<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[93] Ben Jacob, E. et al. (2003) Communication-based regulated freedom of response in<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>bacterial colonies Physica A 330 218-231<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[94]Raichman, N. et al. (2004) Engineered self-organization of natural and man-made<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>systems in Continuum Models and Discrete Systems (in press)<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[95] The Open University (2004) The Clock Work Universe in The Physical World series<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[96] Collier, John. (2003) Hierarchical Dynamical Information Systems<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>With a Focus on Biology Entropy 5(2): 100-124 ; Holism and Emergence: Dynamical<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Complexity Defeats Laplace's Demon (unpublished)<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[97] Swartz, N. (1997) Philosophical Notes<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>URL http://www.sfu.ca/philosophy/swartz/freewill1.htm<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[98] Hoefer, C. (2004) Causal Determinism, The Stanford Encyclopedia of Philosophy<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[99] Ben-Jacob, E. and Garik, P. (1990) The formation of patterns in non-equilibrium<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>growth. Nature, 343: 523-530<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[100] Ben Jacob, E. and Herbert, L. (2001) The artistry of Nature 409, 985-986<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[101] Searle, John R. (1984). Minds, Brains and Science. Harvard University Press<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[102] Dennett, Daniel C. (1978). Brainstorms: Philosophical Essays on Mind and<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Psychology. MIT Press, Cambridge, Mass.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[103] Johnson-Laird, P. N. (1988). The Computer and the Mind. Harvard University Press,<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Cambridge Mass.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[104]Lucas, J.R. (1964) Minds, Machines and Gödel, in Minds and Machines, ed. Alan R.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Anderson Englewood Cliffs<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[105]Dennett, D. (1993). Book Review: Allen Newell, Unified Theories of Cognition,<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Artificial Intelligence, 59, 285-294.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[106]Rapaport, W.J. (1995). Understanding Understanding: Syntactic Semantics and<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Computational Cognition, Philosophical Perspectives 9.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[107] Searl, J.R. (2001) Is the Brain a Digital Computer? McGraw-Hill<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[108] Kay, K. (2001) Machines and the Mind: Do artificial intelligence systems incorporate<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>intrinsic meaning? The Harvard Brain Vol 8<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[109] Lrson, E. Rethinking Deep Blue:Why a Computer Can't Reproduce a Mind Access<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Research Network Origins & Design Archives<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>47<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[110] Schaeffer, J. and Plaat, A. (1997) Kasparov versus Deep Blue: The Re-match ICCA<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Journal vol. 20,. 95-102<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[110]Nelson, E. (1999) Mathematics and the Mind in Toward a Science of Consciousness -<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Fundamental Approaches<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[111] Velicer, G.J. (2003) Social strife in the microbial world. Trends Microbiol. 7, 330-337<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[112] Strassmann, (2000) Bacterial Cheaters Nature 404 555-556<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[113] Strassmann, J.E. Zhu, Y. and Queller, D.C. (2000) Altruism and social cheating in the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>social amoeba Dictyostellium dicoideum Nature 408 965-967<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[114] Queller, D.C. and Strassmann, J.E. (2002) The many selves of social insects Science<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>296 311-313<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[115]Gell-Mann, M. (1992) Nature Conformable To Herself The Bulletin of the Santa Fe<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Institute, 7,1, 7-10, (1992) ; (1995/6) Complexity, 1,4. In these publications, Gell-Mann<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>refers to top-level emergence (i.e., the basic constituents are not altered during the emergence<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>process itself) in adaptive complex systems as sufficient mechanism together with the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>principles of the Neo-Darwinian paradigm to explain Life saying that: “In my opinion, a<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>great deal of confusion can be avoided, in many different contexts, by making use of the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>notion of emergence. Some people may ask, "Doesn't life on Earth somehow involve more<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>than physics and chemistry plus the results of chance events in the history of the planet and<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>the course of biological evolution? Doesn't mind, including consciousness or self-awareness,<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>somehow involve more than neurobiology and the accidents of primate evolution? Doesn't<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>there have to be something more?" But they are not taking sufficiently into account the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>possibility of emergence. Life can perfectly well emerge from the laws of physics plus<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>accidents, and mind, from neurobiology. It is not necessary to assume additional mechanisms<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>or hidden causes. Once emergence is considered, a huge burden is lifted from the inquiring<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>mind. We don't need something more in order to get something more. Although the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>"reduction" of one level of organization to a previous one – plus specific circumstances<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>arising from historical accidents – is possible in principle, it is not by itself an adequate<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>strategy for understanding the world. At each level, new laws emerge that should be studied<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>for themselves; new phenomena appear that should be appreciated and valued at their own<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>level”. He further explains that: “Examples on Earth of the operation of complex adaptive<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>systems include biological evolution, learning and thinking in animals (including people), the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>functioning of the immune system in mammals and other vertebrates, the operation of the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>human scientific enterprise, and the behavior of computers that are built or programmed to<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>evolve strategiesׁfor example by means of neural nets or genetic algorithms. Clearly,<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>complex adaptive systems have a tendency to give rise to other complex adaptive systems”.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[116] Gell-Mann, M. (1994) The quark and the Jaguar: Adventures in the Simple and the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Complex W. H. Freeman&Company,<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>48<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[117] Wolfram, S. (2002) A New Kind of Science Wolfram Media Inc<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[118] Langton, C.G.(Editor) (1997) Artificial Life: An Overview (Complex Adaptive Systems) MIT<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Press<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[119] Dooley, K. (1997) A Complex Adaptive Systems Model of Organization Change,<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Nonlinear Dynamics, Psychology, & Life Science, 1, p. 69-97.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[120] Waldrop, M.M. (1992) Complexity: The Emerging Science at the Edge of Chaos.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Simon and Schuster<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[121] Mitchell, M. (1998) An Introduction to Genetic Algorithms (Complex Adaptive<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Systems) MIT Press<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[122] Holland, J.H. (1995) Hidden Order, Addison-Wesley<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[123]Berlinski, D. (2001) What Brings a World into Being?<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Commentary 111, 17-24<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[124]Feitelson, D.G. and Treinin, M. (2002) The Blueprint for Life?<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>IEEE Computer, July 34-40. Feitelson's and Treinin's article shows that DNA is a rather<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>incomplete code for life. DNA does not even completely specify a protein. Special peptides,<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>chaperons, are needed to help fold a newly synthesized protein into the correct form.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Furthermore, DNA has "multiple readings". A particular transcription is selected based on<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>the mix of the proteins in the cytoplasm – the current state of a cell. "Thus, DNA is only<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>meaningful in a cellular context in which it can express itself and in which there is an<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>iterative, cyclic relationship between the DNA and the context."<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[125] Winfree, A.T. (1988) Book review on “Mind from Matter? An Essay on Evolutionary<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Epistemology” Bull. Math. Biol. 50 193-207<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[126]Abelson, J., Simon, M., Attardi, G. and Chomyn, A. (1995) Mitochondrial Biogenesis<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>and Genetics, Academic Press<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[127] Holt, I.J.Editor (2003) Genetics of Mitochondrial Diseases Oxford Monographs on<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Medical Genetics, No. 47 Oxford University Press<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[128] Knight, R.D., Landweber, L.F., and Yarus, M. (2001) How mitochondria redefine the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>code J. Mol. Evol. 53 299-313<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[129]Burger, G.I. et al (1995) The mitochondrial DNA of the amoeboid protozoon,<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Acanthamoeba castellanii. Complete sequence, gene content and genome organization J.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Mol. Biol. 245:522-537.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[130]Gray, M.W. (1992) The endosymbiont hypothesis revisited Mitochondrial Genomes<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>141:233-357.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>49<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[131]Wolff, G. et al (1993) Mitochondrial genes in the colorless alga Prototheca wickerhamii<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>resemble plant genes in their exons but fungal genes in their introns. Nucleic Acids Research<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>21:719-726. ;<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[132]Wolf, G. et al, (1994) Complete sequence of the mitochondrial DNA of the chlorophyte<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>alga Prototheca wickerhamii. Gene content and genome organization." J. Mol. Biol. 237:74-<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>86.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[133] Landweber, L.F. and Kari, L. (1999) The evolution of cellular computing: natur’s<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>solution to a computational problem, Biosystems 52, 3-13<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[134] Kari, L. and Landweber, L.F. (2003) Biocomputing in cilliates. In Cellular Computing,<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>edited by Amos, M. Oxford University Press<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[135] Makalowski, W. (2003) Not junk after all. Science 300, 1246-7<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[136] Lev-Maor, G. et al. (2003) The birth of an alternatively spliced exon: 3’ splice-site<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>selection in Alu exons. Science 300, 1288-91<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[137] Baruchi, I. and Ben Jacob, E. (2004) Hidden causal manifolds in the space of<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>functional correlations Neuroinformatics (invited) To evaluate the affinities for recorded<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>correlations from N locations the Euclidian distances between every two locations in the Ndimension<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>space of correlations are calculated. The affinities are defined as the correlations<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>normalized by the distances in the space of correlations. Next, the information is projected on<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>low dimension manifolds which contain maximal information about the functional<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>correlations. The space of affinities can be viewed as the analog of a Banach space<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>generalization (to include self reference) of quantum field theory. From a mathematical<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>perspective, the composons can be viewed as a Banach-Tarski decomposition of the space of<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>correlations into functional sets according to the Axiom of Choice (Appendix D).<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[138] Oliver, S.G. et al, (2004) Functional genomic hypothesis generation and<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>experimentation by a robot scientist. Nature, 427, 247 - 252,<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[139] Klironomos, J. N.and Hart M.M. (2001) Animal nitrogen swap for plant carbon Nature<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>410 651-652 Klironomos, J. N. (2002) Feedback with soil biota contributes to plant rarity<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>and invasiveness in communities. Nature, 217: 67-70. This study showed that soil<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>microorganisms can significantly affect the growth of plants in natural ecosystems.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Furthermore, these microorganisms can determine the degree to which plants spread and<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>invade within communities.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[140] Roubertoux, P.L. (2003) Mitochondrial DNA modifies cognition in interaction with the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>nuclear genome and age in mice Nature genetics 35 65-69<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>50<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[141] Chomsky, N. (1957) Syntactic Structures, The Hague: Mouton<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[142] Bambrook, G. (1996) Language and computers, Edinburgh University Press,<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Edinburgh<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[143] Warnow, T. (1997) Mathematical approaches to comparative linguistics. Proc. Natl.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Acad. Sci. USA 94, 6585-6590<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[144] Schechter, E. (1997) Handbook of Analysis and Its Foundations Academic Press and<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>references therein<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[145] Aharonov, Y., Anandan, J. and Vaidman, L. (1996) The Meaning of Protective<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Measurements Found. Phys. 26, 117<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[146]Aharonov, Y., Anandan, J. and Vaidman, L. (1993) Meaning of the Wave Function<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Phys. Rev. A 47, 4616<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[147]Aharonov, Y. and Vaidman, L. (1993)The Schrödinger Wave is Observable After All!<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>in Quantum Control and Measurement, H. Ezawa and Y. Murayama (eds.) Elsevier Publ<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[148] Aharonov, Y., Massar, S., Popescu, S., Tollaksen, J. and Vaidman, L. (1996) Adiabatic<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Measurements on Metastable Systems Phys. Rev. Lett. 77, 983<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[149] Aharonov, Y. and Bohm, D. (1961) Time in the Quantum Theory and the Uncertainty<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Relation for Time and Energy Phys. Rev. 122, 1649<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[150]Aharonov, Y., Anandan, J., Popescu, S. and Vaidman, L. (1990) Superpositions of<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Time Evolutions of a Quantum System and a Quantum Time-Translation Machine<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Phys. Rev. Lett. 64, 2965<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[151]Aharonov, Y. and Vaidman, L. (1990) Properties of a Quantum System During the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Time Interval Between Two Measurements Phys. Rev. A 41, 11<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[152] Orzag, M. (2000) Quantum Optics: Including Noise Reduction, Trapped Ions,<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Quantum Trajectories, and Decoherence<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[153]Yamamoto, Y. and Imamoglu, A. (1999) Mesoscopic Quantum Optics Wiley-Interscience<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[154]Einstein, A., Podolsky, B. and Rosen, N. (1935) Can quantum-mechanical description<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>of physical reality be considered complete?, Physical Review 47 777<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[155] 't Hooft, G. (2002) Determinism beneath quantum mechanics. Preprint<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>xxx.lanl.gov/abs/quant-ph/0212095, (2002). Talk presented at 'Quo vadis quantum<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>mechanics' conference, Temple University, Philadelphia.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>[156] Ball, P. (2003) Physicist proposes deeper layer of reality Nature News 8 January<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>51<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Appendix A: Bacterial Cooperation – The Origin of Natural Intelligence<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Under natural conditions, bacteria tend to cooperatively self-organize into hierarchically<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>structured colonies (109-1013 bacteria each), acting much like multi-cellular organisms<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>capable of coordinated gene expressions, regulated cell differentiation, division of tasks, and<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>more. Moreover, the colony behaves as a new organism with its own new self, although the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>building blocks are living organisms, each with its own self, as illustrated in the figure below.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>To achieve the proper balance of individuality and cooperation, bacteria communicate using<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>sophisticated communication methods which include a broad repertoire of biochemical<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>agents, such as simple molecules, polymers, peptides, proteins, pheromones, genetic<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>materials, and even “cassettes” of genetic information like plasmids and viruses. At the same<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>time, each bacterium has equally intricate intracellular communication means (signal<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>transduction networks and genomic plasticity) of generating intrinsic meaning for contextual<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>interpretation of the chemical messages and for formulating its appropriate response.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Collective decision-making: When the growth conditions become too stressful, bacteria can<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>transform themselves into inert, enduring spores. Sporulation is executed collectively and<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>begins only after "consultation" and assessment of the colonial stress as a whole by the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>individual bacteria. Simply put, starved cells emit chemical messages to convey their stress.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Each of the other bacteria uses the information for contextual interpretation of the state of the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>colony relative to its own situation. Accordingly, each of the cells decides to send a message<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>for or against sporulation. After all the members of the colony have sent out their decisions<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>and read all the other messages, if the “majority vote” is pro-sporulation, sporulation occurs.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Thus, sporulation illustrates semantic and pragmatic levels in bacterial communication, i.e.,<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>bacteria can transmit meaning-bearing messages to other bacteria to conduct a dialogue for<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>collective decision making (Appendix B).<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Although spores can endure extreme conditions (e.g., high temperatures, toxic<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>materials, etc.), all they need for germination is to be placed under mild growth conditions.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>How can they sense the environment so accurately while in almost non living state,<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>surrounded by a very solid membrane, is an unsolved and very little studied enigma.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Exchange of genetic information: Another example of bacterial special abilities has to do<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>with the rapid development of bacterial resistance to antibiotic: The emergence of bacterial<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>strains with multiple drug resistance has become one of the major health problems<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>worldwide. Efficient resistance rapidly evolves through the cooperative response of bacteria,<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>utilizing their sophisticated communication capabilities. Bacteria exchange resistance<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>information within the colony and between colonies, thus establishing a “creative genomic<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>web”. Maintenance and exchange of the resistance genetic information is costly and might be<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>hazardous to the bacteria. Therefore, the information is given and taken on a “need to know”<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>basis. In other words, the bacteria prepare, send and accept the genetic message when the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>information is relevant to their existence.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>52<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>One of the tools for genetic communication is via direct physical transfer of conjugal<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>plasmids. These bacterial mating events, that can also include inter-colonial and even<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>interspecies conjugations, follow chemical courtship played by the potential partners.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Naively presented, bacteria with valuable information (say, resistance to antibiotic) emit<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>chemical signals to announce this fact. Bacteria in need of that information, upon receiving<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>the signal, emit pheromone-like peptides to declare their willingness to mate. Sometimes, the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>decision to mate is followed by an exchange of competence factors (peptides). This preconjugation<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>communication modifies the membrane of the partner cell into a penetrable state<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>needed for conjugation, allowing the exchange of genetic information.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Hierarchical organization of vortices: Some bacteria cope with hazards by generating<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>module structures - vortices, which then become building blocks used to construct the colony<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>as a higher entity (Fig 2). To maintain the integrity of the module while it serves as a higherorder<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>building block of the colony requires an advanced level of communication. Messages<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>must be passed to inform each cell in the vortex that it is now playing a more complex role,<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>being a member of the specific module and the colony as a whole, so it can adjust its<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>behavior accordingly.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Once the vortex is recognized as a possible spatial structure, it becomes easy to<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>understand that vortices can be used as subunits in a more complex colonial structure for<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>elevated colonial plasticity. In Fig 3, we demonstrate how the P. vortex bacteria utilize their<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>cooperative, complexity-based plasticity to alter the colony structure to cope with antibiotic<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>stress, making use of some simple yet elegant solutions. The bacteria simply increase<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>cooperation (by intensifying both attractive and repulsive chemical signaling), leading to<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>larger vortices (due to stronger attraction) that move faster away from the antibiotic stress<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>(due to stronger repulsion by those left behind). Moreover, once they’ve encountered the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>antibiotic, the bacteria seem to generate a collective memory so that in the next encounter<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>they can respond even more efficiently.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Fig. A1: Hierarchical colonial organization: Patterns formed during colonial development of the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>swarming and lubricating Paenibacillus vortex bacteria. (Left) The vortices (modules) are the leading dots seen<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>on a macro-scale (~10cm2). The picture shows part of a circular colony composed of about 1012 bacteria - ~ the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>number of cells of our immune system, ten times the number of neurons in the brain and hundred times the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>human population on earth. Each vortex is composed of many cells that swarm collectively around their<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>53<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>common center. These vortices vary in size from tens to millions of bacteria, according to their location in the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>colony and the growth conditions. The vortex shown on the right (magnification x500, hence each bar is a<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>single bacterium) is a relatively newly formed one. After formation, the cells in the vortex replicate, the vortex<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>expands in size and moves outward as a unit, leaving behind a trail of motile but usually non replicating cells –<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>the vortex tail. The vortices dynamics is quite complicated and includes attraction, repulsion, merging and<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>splitting of vortices. Yet, from this complex, seemingly chaotic movement, a colony with complex but nonarbitrary<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>organization develops (left). To maintain the integrity of the vortex while it serves as a higher-order<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>building block of the colony requires an advanced level of communication. Messages must be passed to inform<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>each cell in the vortex that it is now playing a more complex role, being a member of the specific vortex and the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>colony as a whole, so it can adjust its behavior accordingly. New vortices emerge in the trail behind a vortex<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>following initiation signals from the parent vortex. The entire process proceeds as a continuous dialogue: a<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>vortex grows and moves, producing a trail of bacteria and being pushed forward by the very same bacteria<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>behind. At some point the process stalls, and this is the signal for the generation of a new vortex behind the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>original one, that leaves home (the trail) as a new entity which serves a living building block of the colony as a<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>whole.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Fig. A2: Collective memory and learning: Self-organization of the P.vortex bacteria in the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>presence of non-lethal levels of antibiotic added to the substrate. In the picture shown, bacteria were exposed to<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>antibiotic before the colonial developments. Note that it resulted in a more organized pattern (in comparison<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>with Fig 1.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>From multi-cellularity to sociality: In fact, bacteria can go a step higher; once an entire<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>colony becomes a new multi-cellular being with its own identity, colonies functioning as<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>organisms cooperate as building blocks of even more complex organizations of bacterial<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>communities or societies, such as species-rich biofilms. In this situation, cells should be able<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>to identify their own self, both within the context of being part of a specific colony-self and<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>part of a higher entity - a multi-colonial community to which their colony belongs. Hence, to<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>maintain social cooperation in such societies with species diversity, the bacteria need “multilingual”<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>skills for the identification and contextual interpretation of messages received from<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>colony members and from other colonies of the same species and of other species, and to<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>have the necessary means to sustain the highest level of dialogue within the “chattering” of<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>the surrounding crowed.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Incomprehensible complexity: For perspective, the oral cavity, for example, hosts a<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>large assortment of unicellular prokaryotic and various eukaryotic microorganisms. Current<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>estimates suggest that sub-gingival plaque contains 20 genera of bacteria representing<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>54<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>hundreds of different species, each with its own colony of ~1010 bacteria, i.e., together<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>~thousand times the human population on earth. Thus, the level of complexity of such<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>microbial system far exceeds that of the computer networks, electric networks, transportation<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>and all other man-made networks combined. Yet bacteria of all those colonies communicate<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>for tropism in shared tasks, coordinated activities and exchange of relevant genetic bacterial<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>information using biochemical communication of meaning-bearing, semantic messages. The<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>current usage of “language” with respect to intra- and inter-bacteria communication is mainly<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>in the sense that one would use in, for example, “computer language” or “language of<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>algebra”. Namely, it refers to structural aspects of communication, corresponding to the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>structural (lexical and syntactic) linguistic motifs. Higher linguistic levels - assigning<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>contextual meaning to words and sentences (semantic) and conducting meaningful dialogue<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>(pragmatic) - are typically associated with cognitive abilities and intelligence of human.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Hence, currently one might accept their existence in the “language of dolphins” but regard<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>them as well beyond the realm of bacterial communication abilities. We propose that this<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>notion should be reconsidered.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Appendix B: Clues and Percepts Drawn from Human Linguistics<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Two independent discoveries the 1950’s latter bridged linguistics and genetics: Chomsky’s<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>proposed universal grammar of human languages [141] and the discovery of the structural<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>code of the DNA. The first suggested universal structural motifs and combinatorial principles<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>(syntactic rules) at the core of all natural languages, and the other provided analogous<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>universals for the genetic code of all living organisms. A generation later, these paradigms<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>continue to cross-pollinate these two fields. For example, Neo-Darwinian and population<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>genetics perspectives as well as phylogenetic methods are now used for the understanding the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>structure, learning, and evolution of human languages. Similarly, Chomsky’s meaningindependent<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>syntactic grammar view combined with computational linguistic methods are<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>widely used in biology, especially in bioinformatics and structural biology but increasingly in<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>biosystemics and even ecology.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>The focus has been on the formal, syntactic structural levels, which are also applicable to<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>“machine languages”: Lexical – formation of words from their components (e.g., characters<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>and phonemes); Syntactic – organization of phrases and sentences in accordance with wellspecified<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>grammatical rules [142,143].<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Linguistics also deals with a higher-level framework, the semantics of human language.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Semantics is connected to contextual interpretation, to the assignment of context-dependent<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>meaning to words, sentences and paragraphs. For example, one is often able to capture the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>meaning of a text only after reading it several times. At each such iteration, words, sentences<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>and paragraphs may assume different meanings in the reader's mind; iteration is necessary,<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>since there is a hierarchical organization of contextual meaning. Namely, each word<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>contributes to the generation of the meaning of the entire sentence it is part of, and at the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>same time the generated whole meaning of the sentence can change the meaning of each of<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>the words it is composed of. By the same token, the meanings of all sentences in a paragraph<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>are co-generated along with the created meaning of the paragraph as a whole, and so on, for<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>all levels.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>55<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Readers have semantic plasticity, i.e., a reader is free to assign individualistic contextual and<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>causal meanings to the same text, according to background knowledge, expectations, or<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>purpose; this is accomplished using combined analytical and synthetic skills. Beyond this,<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>some linguists identify the conduction of a dialogue among converser using shared semantic<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>meaning as pragmatics. The group usage of a dialogue can vary from activity coordination<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>through collective decision-making to the emergence of a new group self. To sustain such<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>cognitive abilities might require analogous iterative processes of self-organization based<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>generation of composons of meaning within the brain which will be discussed elsewhere<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Drawing upon human linguistics with regard to bacteria, semantics would imply<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>contextual interpretation of chemical messages, i.e., each bacterium has some freedom<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>(plasticity) to assign meaning according to its own specific, internal and external, contextual<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>state. For that, a chemical message is required to initiate an intra-cellular response that<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>involves internal restructuring - self-organization of the intracellular gel and/or the genenetwork<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>or even the genome itself. To sustain a dialogue based on semantic messages, the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>bacteria should have a common pre-existing knowledge (collective memory) and abilities to<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>collectively generate new knowledge that is transferable upon replication. Thus, the ability to<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>conduct a dialogue implies that there exist some mechanisms of collective gene expression,<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>analogous to that of cell differentiation during embryonic development of multi-cellular<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>organisms, in which mitochondria might play an important role.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Appendix C: Gödel’s Code and the Axiom of Choice<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Hilbert’s second problem<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Gödel’s theorems provided an answer to the second of the 23 problems posed by Hilbert.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>2. Can it be proven that the axioms of logic are consistent?<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Gödel’s theorems say that the answer to Hilbert’s second question is negative. For that he has<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>invented the following three steps code:<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>1. Gödel assigned a number to each logical symbol, e.g.,<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Not ≡ 1<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Or ≡ 2<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>If then ≡ 3<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>∃ ≡ 4<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>2. He assigned prime numbers to variables, e.g.,<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>x ≡ 11<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>y ≡ 13<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>3. He assigned a number to any statement according to the following example: “There is a<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>number not equal to zero”.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>In logic symbols ( ∃ x ) ( x ∼ = 0 )<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>In Gödel’s numbers 8 4 11 9 8 11 1 5 6 9<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>The statement’s number is 28.34.511.79.118.1311.171.195.236.299<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>56<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Note that it is a product of the sequence of prime numbers, each to the power of the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>corresponding Gödel’s number. This coding enables one-to-one mapping between statements<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>and the whole numbers.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Hilbert’s first problem and the Axiom of Choice<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Gödel also studied the first of the 23 essential problems posed by Hilbert.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>1.a Is there a transfinite number between that of a denumerable set and the numbers of<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>the continuum? 1.b Can the continuum of numbers be considered a well ordered set?<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>In 1940, Gödel proved that a positive answer to 1.a is consistent with the axioms of von<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Neumann-Bernays-Gödel set theory. However, in 1963, Cohen demonstrated that it is<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>inconsistent with the Zermelo-Frankel set theory. Thus, the answer is undecidable – it<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>depends on the particular set theory assumed. The second question is related to an important<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>and fundamental axiom in set sometimes called Zermelo's Axiom of Choice. It was<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>formulated by Zermelo in 1904 and states that, given any set of mutually exclusive nonempty<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>sets, there exists at least one set that contains exactly one element in common with each of<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>the nonempty sets. The axiom of choice can be demonstrated to be independent of all other<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>axioms in set theory. So the answer to 1.b is also undecidable.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>The popular version of the Axiom of Choice is that [144]:<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Let C be a collection of nonempty sets. Then we can choose a member from each set in<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>that collection. In other words, there exists a choice function f defined on C with the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>property that, for each set S in the collection, f(S) is a member of S.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>There is an ongoing controversy over how to interpret the words "choose" and<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>"exists" in the axiom: If we follow the constructivists, and "exists" means “to find," then the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>axiom is false, since we cannot find a choice function for the nonempty subsets of the real<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>numbers. However, most mathematicians give "exists" a much weaker meaning, and they<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>consider the Axiom to be true: To define f(S), just arbitrarily "pick any member" of S.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>In effect, when we accept the Axiom of Choice, this means we are agreeing to the convention<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>that we shall permit ourselves to use a choice function f in proofs, as though it "exists" in<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>some sense, even though we cannot give an explicit example of it or an explicit algorithm for<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>it.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>The choice function merely exists in the mental universe of mathematics. Many different<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>mathematical universes are possible. When we accept or reject the Axiom of Choice, we are<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>specifying which universe we shall work in. As was shown by Gödel and Cohen, both<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>possibilities are feasible – i.e., neither accepting nor rejecting AC yields a contradiction.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>The Axiom of Choice implies the existence of some conclusions which seem to be counterintuitive<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>or to contradict "ordinary" experience. One example is the Banach-Tarski<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Decomposition, in which the Axiom of Choice is assumed to prove that it is possible to take<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>the 3-dimensional closed unit ball,<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>57<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>B = {(x,y,z) ∈ R3 : x2 + y2 + z2 < 1}<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>and partition it into finitely many pieces, and move those pieces in rigid motions (i.e.,<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>rotations and translations, with pieces permitted to move through one another) and<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>reassemble them to form two copies of B.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>At first glance, the Banach-Tarski Decomposition seems to contradict some of our intuition<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>about physics – e.g., the Law of Mass Conservation from classical Newtonian physics.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Consequently, the Decomposition is often called the Banach-Tarski Paradox. But actually, it<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>only yields a complication, not a contradiction. If we assume a uniform density, only a set<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>with a defined volume can have a defined mass. The notion of "volume" can be defined for<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>many subsets of R3, and beginners might expect the notion to apply to all subsets of R3, but it<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>does not. More precisely, Lebesgue measure is defined on some subsets of R3, but it cannot<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>be extended to all subsets of R3 in a fashion that preserves two of its most important<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>properties: the measure of the union of two disjoint sets is the sum of their measures, and<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>measure is unchanged under translation and rotation. Thus, the Banach-Tarski Paradox does<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>not violate the Law of Conservation of Mass; it merely tells us that the notion of "volume" is<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>more complicated than we might have expected.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>We emphasize that the sets in the Banach-Tarski Decomposition cannot be described<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>explicitly; we are merely able to prove their existence, like that of a choice function. One or<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>more of the sets in the decomposition must be Lebesgue unmeasurable; thus a corollary of<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>the Banach-Tarski Theorem is the fact that there exist sets that are not Lebesgue measurable.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>The idea we lean toward is that in the space of affinities the composons represent similar<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>decomposition but of information which is the extensive functional in this space which<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>corresponds to the volume in the system real space.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Appendix D: Description of Turing’s Conceptual Machinery<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>To support our view of the limits of Artificial Intelligence or Machines Intelligence, we<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>present here a relatively detailed description of Turing’s Universal Machine. Turing proved that any<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>discrete, finite state with fixed in time finite set of instructions can be mapped onto his conceptual<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>machine. Note that there can be self-reference in the execution of the instructions but not in their<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>logical structure.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>The process of computation was graphically depicted in Turing's paper when he asked the reader to<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>consider a device that can read and write simple symbols on a paper tape that is divided into<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>squares. The "reading/writing head" can move in either direction along the tape, one square at a<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>time, and a control unit that directs the actions of the head can interpret simple instructions about<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>reading and writing symbols in squares. The single square that is "scanned" or "read" at each stage<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>is known as the Active Square. Imagine that new sections can be added at either end of the existing<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>tape, so it is potentially infinite.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Suppose the symbols are "X" and "O". Suppose that the device can erase either symbol when it<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>reads it in the Active Square and replace it with the other symbol (i.e., erase an X and replace it with<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>an O, and vice versa). The device also has the ability to move left or right, one square at a time,<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>according to instructions interpreted by the control unit. The instructions cause a symbol to be<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>erased, written, or left the same, depending on which symbol is read.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>58<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Any number of games can be constructed using these rules, but they would not all necessarily be<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>meaningful. One of the first things Turing demonstrated was that some of the games constructed<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>under these rules can be very sophisticated, considering how crude and automaton-like the primitive<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>operations seem to be. The following example illustrates how this game can be used to perform a<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>simple calculation.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>The rules of the game to be played by this Turing machine are simple: Given a starting position in<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>the form of a section of tape with some Xs and Os on it, and a starting square indicated, the device<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>is to perform the actions dictated by a list of instructions and follows the succeeding instructions<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>one at a time until it reaches an instruction that forces it to stop. (If there is no explicit instruction in<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>the table of instructions for a particular tape configuration, there is nothing that the machine can do<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>when it reaches that configuration, so it has to stop.)<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Each instruction specifies a particular action to be performed if there is a certain symbol on the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>active square at the time it is read. There are four different actions; they are the only legal moves of<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>this game. They are:<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Replace O with X.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Replace X with O.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Go one square to the right.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Go one square to the left.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>An example of an instruction is: "If there is an X on the active square replace it with O." This<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>instruction causes the machine to perform the second action listed above. In order to create a<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>"game," we need to make a list that specifies the number of the instruction that is being followed at<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>every step as well as the number of the instruction that is to be followed next. That is like saying<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>"The machine is now following (for example) instruction seven, and the instruction to be followed<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>next is (for example) instruction eight" (as is illustrated in appendix 3).<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Here is a series of instructions, given in coded form and the more English-like translation.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Taken together, these instructions constitute an "instruction table" or a "program" that tells a<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Turing machine how to play a certain kind off game:<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>1XO2 (Instruction #1:if an X is on the active square, replace it with O, then execute instruction #2.)<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>2OR3 (Instruction #2: if an O is on the active square, go right one square and then execute instruction #3.)<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>3XR3 (Instruction #3: if an X is on the active square, go right one square execute instruction #3;<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>3OR4 but if an O is on the active square, go right one square and then execute instruction #4.)<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>4XR4 (Instruction #4: if an X is on the active square, go right one square and then execute instruction #4;<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>4OX5 but if an O is on the active square, replace it with X and then execute instruction #5.)<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>5XR5 (Instruction #5: if an X is on the active square, go right one square and then execute instruction #5;<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>5OX6 but if an O is on the active square, replace it with X and then execute instruction #6.)<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>6XL6 (Instruction #6: if an X is on the active square, go left one square and then execute instruction #6<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>6OL7 but if an O is on the active square, go left one square and then execute instruction #7.)<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>7XL8 (Instruction #7: if an X is on the active square, go left one square and then execute instruction #8.)<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>8XL8 (Instruction #8: if an X is on the active square, go left one square and then execute instruction #8;<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>8OR1 but if an O is on the active square, go right one square and then execute instruction #1.)<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Note that if there is an O on the active square in instruction #1 or #7, or if there is an X on the active square in<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>instruction #2, the machine will stop.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>In order to play the game (run the program) specified by the list of instructions, one more<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>thing must be provided: a starting tape configuration. For our example, let us consider a tape<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>with two Xs on it, bounded on both sides by an infinite string of Os. The changing states of a<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>single tape are depicted here as a series of tape segments, one above the other. The Active<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>59<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Square for each is denoted by a capital X or O. When the machine is started it will try to<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>execute the first available instruction, instruction #1. The following series of actions will then<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>occur<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Instruction Tape What the Machine Does<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>#1 ...ooXxooooooo... One (of two) Xs is erased.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>#2 ...ooOxooooooo...<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>#3 ...oooXooooooo... Tape is scanned to the right<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>#3 ...oooxOoooooo...<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>#4 ...oooxoOooooo...<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>#5 ...oooxoXooooo... Two Xs are written.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>#5 ...oooxoxOoooo...<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>#6 ...oooxoxXoooo...<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>#6 ...oooxoXxoooo... Scanner returns to the other original X<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>#6 ...oooxOxxoooo...<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>#7 ...oooXoxxoooo...<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>#8 ...ooOxoxxoooo... Scanner moves to the right and execute #1<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>#1 ...oooXoxxoooo...<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>#2 ...oooOoxxoooo...<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>#3 ...ooooOxxoooo... Scanner moves to the right of the two Xs that were written earlier.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>#4 ...oooooXxoooo...<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>#4 ...oooooxXoooo...<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>#4 ...oooooxxOooo...<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>#5 ...oooooxxXooo... Two more Xs are written.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>#5 ...oooooxxxOoo...<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>#6 ...oooooxxxXoo...<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>#6 ...oooooxxXxoo... Scanner looks for any more original Xs<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>#6 ...oooooxXxxoo...<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>#6 ...oooooXxxxoo...<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>#6 ...ooooOxxxxoo...<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>#7 ...oooOoxxxxoo... The machine stops because there is no instruction for #7 if O is being scanned.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>This game may seem rather mechanical. The fact that it is mechanical was one of the points<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Turing was trying to make. If you look at the starting position, note that there are two<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>adjacent Xs. Then look at the final position and note that there are four Xs. If you were to use<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>the same instructions, but start with a tape that had five Xs, you would wind up with ten Xs.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>This list of instructions is the specification for a calculating procedure that can double the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>input and display the output. It can, in fact, be done by a machine.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>(This Appendix is edited with author’s permission from “Tools for Thoughts: The People and<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Ideas of the Next Computer Revolution” by Howard Rheingold 1985)<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Appendix E: Non-Destructive Quantum Measurements<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Protective Quantum Measurements and Hardy’s Paradox<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>The debate about the existence of the choice function in the Axiom of choices is in the same<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>spirit as the debated questions about the reality of the wave function and paradoxes<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>connected with quantum entanglement like the one proposed by Hardy (see references in the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>extract below). It has been proven by Aharonov and his collaborators[145-148 ]that it is<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>possible in principle to perform quantum measurements to extract information beyond<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>60<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>quantum uncertainty while the wave function is protected (for the case of eigenstate with<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>discrete spectrum of eigenvalue they refer to it as protective measurements, and for<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>continuous spectrum as weak measurements). The protective, weak and non-demolition<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>(described latter) quantum measurements provide different methods for non-destructive<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>measurements of quantum systems – there is no destruction of the quantum state of the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>system due to externally imposed measurement. These kinds of measurements enable the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>observations of unexpected quantum phenomena. For example, the thought experiment<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>proposed in Hardy’s paradox can be tested as illustrated in [Quantum Physics, abstract quantph/<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>0104062].<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>61<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>As with a multiple-options state for organism, Hardy’s paradox is usually assumed to be resolved on<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>the grounds that the thought experiment doesn't correspond to any possible real experiment and is<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>therefore meaningless. The only way to find out what really happens to the particles in the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>experiment would be to measure their routes, rather than simply inferring them from the final result.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>But, as soon as a particle detector is placed in any of the paths, standard strong quantum<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>measurement will cause the collapse of its wave function and wash out any possible future<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>interference between the electron and positron states.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>However, Hardy’s thought experiment can be converted into a real one if the assumed strong<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>quantum measurement is replaced with weak measurements. The idea is to exploit quantum<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>uncertainty by using a quantum detector which is weakly coupled to the measured system to the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>degree that it reads eigenvalues smaller than the expected quantum uncertainty. It was proved that<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>by doing so quantum superposition of states can be preserved (i.e., there is no collapse of the wave<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>function). Clearly, a single weak measurement can not, on its own, provide any meaningful<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>information. However, it was proved theoretically that, when repeated many times, the average of<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>these measurements approximates to the true eigenvalue that would be obtained by a single strong<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>measurement involving a collapse of the wave function [145-148]..<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Therefore, when weak measurements are assumed, not only does the original paradox remain, but<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>an additional difficulty arises. The theoretical investigations imply that two pairs of electronpositron<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>can coexist in the apparatus at the same time: A detector located in the part of the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>interferometer in which the particle trajectories are non-overlapping can yield a final reading of -1,<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>i.e., a "negative presence" of a pair of particles! To quote Aharonov:<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>The -1 result illustrates that there is a way to carry out experiments on the counter-intuitive<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>predictions of quantum theory without destroying all the interesting results. A single quantum<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>particle could have measurable effects on physical systems in two places at once, for instance.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Moreover, when you get a good look inside, quantum theory is even more bizarre than we<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>thought. Quantum particles can assume far more complex identities than simply being in two<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>places at once: pairs of particles are fundamentally different from single particles and they<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>can assume a negative presence. And the fact that weak measurements transform the paradox<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>from a mere technicality into an unavoidable truth suggests that they could provide a<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>springboard for new understanding of quantum mechanics. There are extraordinary things<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>within ordinary quantum mechanics; the negative presence result might be just the tip of the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>iceberg: every paradox in quantum theory may simply be a manifestation of other strange<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>behaviors of quantum objects that we have not yet detected - or even thought of.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>62<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>The Quantum Time-Translation Machine<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Another unexpected quantum reality about the concept of time [149], can be viewed as being<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>metaphorically related to the organism’s internal model of itself, which acts on different time scales<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>for educated decision-making. We refer to the Aharonov, Anandan, Popescue and Vaidman<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>(AAPV) Quantum Time-Translation Machine [150,151]:<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>63<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Quantum Non-Demolition Measurements<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Another approach to measure the eigenvalue of a specific observable without demolition of the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>quantum state of the observed system is referred to as QND measurements used mainly in quantum<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>optics [152,153]. The idea can be traced back to the Einstein, Podolsky and Rosen paradox [154],<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>presented in their 1935 paper entitled "Can quantum-mechanical description of physical reality be<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>considered complete?” They have shown that, according to quantum mechanics, if two systems in a<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>combined state (e.g., two half-spin particles in a combined-spin state) are at a large distance from<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>each other, a measurement of the state of one system can provide information about that of the other<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>one. The conceptual idea of the QND measurements is to first prepare the observed system and a<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>quantum detector (e.g., Polarized light) in an entangled state and then to extract information about<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>the observed system by using ordinary destructive measurement on the quantum detector. This way,<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>the state of the detector is demolished but that of the system of interest is protected. In this sense,<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>the newly developed biofluoremetry method for studying the intracellular spatio-temporal<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>organization and functional correlations is actually a version of QND measurements and not just an<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>analogy.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Proceeding with the same metaphor, bacterial colonies enable to perform new real<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>experiments in analogy with Aharonov’s ‘back from the future’ notion about the backward<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>propagation of the wave function. For example, several colonies taken from the same culture<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>in a stationary phase, or even better, from spores, can be grown at successive intervals of<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>time while exposed to the same constraints. The new concept is to let, for example, bacteria<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>taken from the future (the older colonies) to communicate with colonies at the present and<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>compare their consequent development with those who were not exposed to their own future.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Albeit simple, the detailed setup and interpretations of the experiments should be done<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>keeping in mind that (as we have shown), even similar colonies grown at the same time<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>develop distinguishable self-identities.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>To Be is to Change<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>64<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>The picture of the decomposable mixed state of multiple options is also metaphorically<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>analogous to t’Hooft’s Universe [155,156], composed of underlying Be-able and Changeable<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>non-commuting observables at the Planck length scales (10-35meter). His motivation was<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>the paradox posed by the in principle contradiction of simulating backward in time a unified<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>theory composed of gravity and quantum mechanics based on the current Copenhagen<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>interpretation: There is no deeper reality, hidden variables do not exist and the world is<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>simply probabilistic. It holds that we are not ignorant about quantum objects; it's just that<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>there is nothing further to be known. This is in contradiction with Einstein’s picture later<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>named ‘hidden variables’. The EPR paradox mentioned earlier was an attempt to illustrate<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>that, unless the existence of unknown and non-measurable variables is assumed, one runs<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>into contradiction with our intuitive perception of reality. Simply phrased, according to the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>‘hidden variable’ picture, quantum uncertainty reflects some underlying deterministic reality<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>that in principle can be measured. Following the EPR paradox, Bell proposed a specific<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>inequality that, if measured, can distinguish between the Copenhagen and hidden variables<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>interpretations of quantum mechanics. The consequent experiments were in agreement with<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>the Copenhagen interpretation. In 2002, t’Hooft presented a new approach to the problem<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>that most perceived as being resolved. His answer to the Copenhagen interpretation is [155]:<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>65<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>To solve the paradox, he proposed a third approach based on the idea that, on the Planckian level,<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>reality might be essentially different from that on the larger scales of interest. The idea is to define<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>equivalence classes of states. Two states are defined as equivalent if and only if they evolve in the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>near future to the same state. We emphasize that this is the analogy (in reverse) to our picture of<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>‘harnessing the past to free the future’ during internal self-organization of organisms.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Metaphorically, for similar reasons (in reverse) why loss of information leads to the quantum<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>uncertainty for an external observer, the storage of past information by the organism affords it an<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>internal state of multiple options inaccessible to an external observer. To take into consideration the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>crucial role of information loss, t’Hooft proposes that two kinds of observables exist on the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Planckian scale. The ones that describe the equivalent classes are the be-able ones:<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>With regard to organisms, the corresponding observables are those connected with information<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>registered in the structural organization or statistically averaged dynamics (e.g., gene-expression<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>measurements from several organisms under the same conditions). According to t’Hooft all other<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>operators are the change-able ones that do not commute with the be-able operators. So that,<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>In this picture, reality on the very fundamental level is associated with information rather than<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>matter:<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>66<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>This picture of nature is metaphorically similar to the picture we propose for organisms – a balance<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>between intrinsic and extrinsic flow of information. The essential difference is that organisms are<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>self-organizing open system that can store information, including about their self.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Appendix F: Turing’s Child Machine<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>In the 1950’s the three interchangeable terms ‘Machine Intelligence’, ‘Artificial Intelligence’<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>and ‘Machine learning’ referred to the causal (goal) of learning about humans by building<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>machines to exhibit behavior which, if performed by humans, would be assumed to involve<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>the use of intelligence. In the next five decades, “Machine Intelligence” and its associated<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>terms evolved away from their original causal meanings. These terms are now primarily<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>associated with particular methodologies for attempting to achieve the goal of getting<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>computers to automatically solve problems. Thus, the term “artificial intelligence” is<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>associated today primarily with the efforts to design and utilize computers to solve problems<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>using methods that rely on knowledge, logic, and various analytical and mathematical<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>methods. Only in some spin-off branches of research, such as genetic programming and<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>evolvable hardware, does Turing’s term still communicate the broad goal of getting<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>computers to automatically solve problems in a human-like or even broader biological-like<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>manners.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>In his 1948 paper, Turing identified three strategies by which human-competitive machine<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>intelligence might be achieved. The first is a logic-driven search which is the causal reason<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>(described earlier) that led Turing to develop the idea of his conceptual machine, i.e., to learn<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>about the foundations of mathematics and logics. The second reason for generating machine<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>intelligence is what he called a “cultural search” in which previously acquired knowledge is<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>accumulated, stored in libraries, and used in problem solving a - the approach taken by<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>modern knowledge-based expert systems. These first two approaches of Turing’s have been<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>pursued over the past 50 years by the vast majority of researchers using the methodologies<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>that are today primarily associated with the term “artificial intelligence.”<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>67<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Turing also identified a third approach to machine intelligence in his 1948 paper,<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>saying: “There is the genetical or evolutionary search by which a combination of genes is<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>looked for, the criterion being the survival value.” Note that this remarkable realization<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>preceded the discovery of the DNA and modern genetics. So Turing could not have specified<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>in 1948 how to conduct the “genetical or evolutionary search” for solutions to problems and<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>could not mention concepts like population genetics and recombination. However, he did<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>point out in his 1950 paper that:<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>We cannot expect to find a good child-machine at the first attempt. One must<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>experiment with teaching one such machine and see how well it learns. One can then try<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>another and see if it is better or worse. There is an obvious connection between this<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>process and evolution, by the identifications<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>“Structure of the child machine = Hereditary material”;<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>“Changes of the child machine = Mutations”;<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>“Natural selection = Judgment of the experimenter”.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>Thus, Turing correctly perceived in 1948 and 1950 that machine intelligence can only be<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>achieved by an evolutionary process in which a description of a computer hardware and<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>software (the hereditary material) undergoes progressive modification (mutation) under the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>guidance of natural selection (i.e., selective pressure in the form of what is now usually<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>called “fitness”). The measurement of fitness in modern-day genetics and evolutionary<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>computation is usually performed by automated means, as opposed to a human passing<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>judgment on each individual candidate, as suggested by Turing.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>From this perspective, Turing’s vision is actually closer to our view about organisms’<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>intelligence, provided that the external “teacher” is replaced by an inner one, and the<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>organism has freedom of response to the external information gathered, rather than forced to<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-FAMILY: Arial"><FONT size=3>follow specific instructions.<o:p></o:p></FONT></SPAN></P>
<P class=MsoNormal style="MARGIN: 0in 0in 0pt"><SPAN style="FONT-SIZE: 10pt; FONT-FAMILY: Arial">----------<BR>Howard Bloom<BR>Author of The Lucifer Principle: A Scientific Expedition Into the Forces of History and Global Brain: The Evolution of Mass Mind From The Big Bang to the 21st Century<BR>Visiting Scholar-Graduate Psychology Department, New York University; Core Faculty Member, The Graduate Institute<BR>www.howardbloom.net<BR>www.bigbangtango.net<BR>Founder: International Paleopsychology Project; founding board member: Epic of Evolution Society; founding board member, The Darwin Project; founder: The Big Bang Tango Media Lab; member: New York Academy of Sciences, American Association for the Advancement of Science, American Psychological Society, Academy of Political Science, Human Behavior and Evolution Society, International Society for Human Ethology; advisory board member: Youthactivism.org; executive editor -- New Paradigm book series.<BR>For information on The International Paleopsychology Project, see: www.paleopsych.org<BR>for two chapters from <BR>The Lucifer Principle: A Scientific Expedition Into the Forces of History, see www.howardbloom.net/lucifer<BR>For information on Global Brain: The Evolution of Mass Mind from the Big Bang to the 21st Century, see www.howardbloom.net</SPAN><SPAN style="FONT-FAMILY: Arial"><o:p></o:p></SPAN></P></FONT></DIV></DIV></DIV></BODY></HTML>