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Abstract

Recordings of spontaneous activity of in-vitro neuronal networks re-
veal various phenomena on different time scales. These include syn-
chronized firing of neurons, bursting events of firing on both cell and
network levels, hierarchies of bursting events etc. These findings sug-
gest that networks’ natural dynamics are self-regulated to facilitate
different processes on intervals in orders of magnitude ranging from
fractions of seconds to hours. Observing these unique structures of
recorded time-series give rise to questions regarding the diversity of
the basic elements of the sequences, the information storage capacity
of a network and the means of implementing calculations.

Due to the complex temporal nature of the recordings, the proper

methods of characterizing and quantifying these dynamics are on the



time-frequency plane. We thus introduce time-series analysis of neu-
ronal network’s synchronized bursting events applying the wavelet
packet decomposition based on the Haar mother-wavelet. We utilize
algorithms for optimal tiling of the time-frequency plane to signify
the local and global variations within the sequence. New quantifying
observables of regularity and complexity are identified based on both
the homogeneity and diversity of the tiling [1]. These observables are
demonstrated while exploring the regularity-complexity plane to fulfill
the accepted criteria (yet lacking an operational definition) of Effective
Complexity. The presented question regarding the sequences’ capac-
ity of information is addressed through applying our observables on
recorded sequences, scrambles sequences, artificial sequences produced
with similar long-range statistical distributions and on outputs of neu-

ronal models devised to simulate the unique networks’ dynamics.

Self-regulated complexity

Diverse natural systems, biotic and abiotic alike, can exhibit self-organization
of complex structures and dynamics [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]. Higher
complexity elevates their self-plasticity and flexibility which, in turn, impart them
better adaptability to external stimuli and imposed tasks [2, 5, 13]. It has been
suggested that the referred biotic complexity is self-regulated and generated via
autonomous utilization of internal means, hence the term self-regulated complex-
ity [13]. If correct, this special nature of biotic complexity should be manifested
in some observable features of the dynamical behavior. This infer that in princi-
ple, with proper observables, it should be possible to distinguish between biotic
and non autonomous abiotic complexities.

Therefore, understanding this linkage and the behavioral motifs of such com-
plex adaptive systems requires understanding of complexity. However, despite

the quest for an operational measure, this concept is still blurred and intuitive,



with no agreed definition [5, 6, 7, 14, 9, 11, 12, 13]. This state of affairs might
stem from the intermingled common use of the term to describe different notions
[14, 6, 11, 12, 13]. To avoid the confusion, we adapted the distinction between
structural (configurational) and operational (functional) complexity [14, 11, 13]

and present a new measurable definition of the former.

Hints about self-regulation in cultured networks

Our in-vitro neuronal networks were spontaneously formed from a mixture of
cortex neurons and glia cells homogeneously spread over a lithographically spec-
ified area [15]. Consequently, the spread cells turned into a network by sending
dendrites and axons, to form synaptic connections between neurons [16, 17, 18].
Although the above described self-wiring process is self-executed with no ex-
ternally provided guiding stimulations or chemical cues, a relatively intense dy-
namical activity is spontaneously generated within several days. The activity is
marked by the formation of synchronized bursting events (SBEs), each in short
( 100 — 400msecs) time windows during which most of the recorded neurons
participate in relatively rapid firing. For the analysis of the temporal ordering
of the events it is convenient to convert the recorded activity into a binary se-
quence, whose ”1”s, correspond to the SBEs [18]. An illuminating example of
the formation of such a binary sequence is shown in Fig.1. We have shown that
the SBEs show long time correlations, and for some networks, clear hierarchical
temporal ordering is observed (i.e. bursts of SBEs, bursts of bursts of SBEs, up
to four detectable hierarchical levels)[16]. This behavior is presented in Fig.2.
Put together, the above observations motivated us to assume that the sponta-
neous activity of cultured networks, might be self-regulated despite the artificial
nature of their construction. Such self-regulation can be executed via neuronal
internal autonomous means which are self-activated by the neurons. Or even
more likely, they are co-activated by glia cells (with their own complementary

regulatory means) which are coupled to the neurons [19, 20, 21, 22].



Looking for quantified observables of self-regulated complexity

Guided by the notion of self-regulated complexity (vs. abiotic-like non-autonomous
complexity), we set to develop proper observables for distinguishing between these
possibilities. To proceed, we observe the features of a recorded sequence such as
presented in Fig.2. The recorded sequence is characterized by large local and
global temporal variations. Namely, at each temporal location, there are large
frequency (density of SBEs) variations when looking at time windows of different
widths. These local variations vary from place to place along the sequence.

Another illuminating example of a sequence with complex temporal organiza-
tion is provided by the recorded time series of neuronal activity such as the one
presented in Fig. 3 [16]. We illustrate in Fig.3 that shuffling (random reordering
of the intervals) alters the temporal ordering of the original sequence, yet pre-
serves the same statistical scaling properties. As suggested in [16], through out
our research of neuronal recordings, we approximated the statistical behavior of
our recordings using the Lévy distribution ! [24, 25, 23, 26].

Once again, it is visualized that the temporal structure is composed of time
segments of dense activity (bursts) separated by time intervals of relatively sparse

activity which infer local and global variations. These characteristic features

'The Lévy distribution P,y of X is given by Pa,(X) = 1 [ exp(—v¢*)cos(¢X)dg where
0 < a < 2 is the index of stability, which determines the long tail decay of the distribution,
and v > 0 is a scale factor, which determines the location of the bending point of the Lévy
distribution. Special cases of the Lévy distribution are the Gaussian distribution (o = 2) and
the Cauchy distribution (o = 1). The Lévy statistics is a family of random distribution that
have three important mathematical properties:

1. These distributions are stable. That is, the sum of random variables of this kind also has
stable distribution.

2. The asymptotic behavior for large values of X is a power-law behavior. That is: Pp,(|X]) ~
|X|~(**+2) for large values of X. The moments of the distribution are deeply affected by this
property [23]. Specifically, all moments of the distribution diverge for @ < 2. Thus, all non
Gaussian stable stochastic processes do not have characteristic time scale due to the fact that
the variance is infinite.

3. Lévy distribution resigns in the Generalized Central Limit Theorem. According to the
classical Central Limit Theorem, the normalized sum of independent and identically distributed
random variable with a finite variance converges to a normal distribution. The Generalized
Central Limit Theorem proclaims that if the finite variance assumption is to be dropped, the
only possible resulting limits are stable, i.e. Lévy distributions.



which are not invariant under scrambling (Fig. 3) might provide the sequence a
template for the encoding of information as we comment at the end. They are
also the structural traits that cause their appearance to look complex.

Guided by this awareness and the previously mentioned special temporal fea-
tures of the recorded sequences, we set the following requirements from our ob-
servables: 1. To associate the sequence regularity with the uniformity in the
time-frequency (rates) relative resolutions rather than with the statistics of the
temporal ordering. The former refers to the relative resolution required to cap-
ture maximal information about the observed variations. 2. To associate the
sequence complexity with the local and global variations in the required relative
resolutions, instead of the directly observed local and global frequency variations.
3. To evaluate significantly lower values of complexities to the recorded sequences
after they are shuffled while keeping similar regularity regardless of shuffling. 4.
To be able to distinguish between the dynamical behaviors of different systems
by their distinct positions on the complexity-regularity plane. 5. To be able to

handle sequences with hierarchical temporal organizations.

Representation at the time-frequency plane

To retain information about both temporal locations and frequency variations,
we first transform the sequence into a presentation in its corresponding time-
frequency domain utilizing the Wavelet Packets Decomposition (WPD)

The WPD decomposes a signal f(t) into a set of levels, each with a unique
time-frequency resolution. The packets are are a set of orthogonal localized func-
tions. Localized, in the sense that each has a definite support of both the time
and frequency domain. In Fig. 4 we present an example the levels of decomposi-
tion for the type of wavelet packets used for this paper - packets produced from
the Haar mother wavelet [27, 28, 29].

Next, we would like to extract at each temporal position (say the i-th element

of the sequence) information about the activity rates (frequencies) for all available



time windows centered around this location. For a sequence of N;, elements, the
relevant time windows range from At,,;, = 1 (in units of the basic recording time
width) to Atpmee = Npin- That is, we would like to extract information about
Ny, time windows at each of the Ny;, locations of the sequences. However,
such N7, matrix for a sequence of only Ny, elements must contain redundant
information (i.e. over-complete representation of the recorded sequence). In order
to avoid such redundancy, only N, locations on the time-frequency domain are
allowed to be selected, subject to the uncertainty constraint between time and
frequency resolutions, AtAf = 1. Since there are also Ny;, frequency bands,
from Afpin = 1 to Afiee = Npin it implies that each location can be assigned
a local relative resolution At/Af out of Ng =1+ logs(Nyin) possible ratios (for
simplicity, Ny, of the sequences considered here are in factors of 2).

It is convenient to illustrate both constraints as tiling of the time-frequency
domain with Ny, rectangles, each with its own aspect ratio (height A f and width
At) representing the relative resolutions in time and frequency, and equal area
AtAf = 1. In other words, the WPD algorithm allows partitioning (tiling) of the
domain into rectangles of different aspect ratios. Each possible combination of
Nyin, non-overlapping rectangles that geometrically covers the entire domain can
serve as a complete basis that spans the recorded sequence on its corresponding

time-frequency domain.

Selecting the Best Tiling

The next challenge is to select, out of all possible tilings, the one which is
most efficient in extracting from the recorded sequence the features of interest
[29, 30]. Here we are interested in a method that will generate for the recorded
sequence and its shuffled one distinct tilings, as illustrated in Fig.5. We follow
the approach of Thiele and Villemoes [30], which is inspired by the notions of
global Shannon information or Entropy minimization. The idea is to select the

combination of rectangles that can capture most efficiently the information about



local and global variations in the sequence temporal ordering. In other words, we

aim to select a tiling that minimizes the sum of the cost function M [31, 29, 30]:

M, = _inog(Qn) (1)

where ¢, is the normalized energy of the signal on the n* rectangle. The global
measure M - the summation of M, over the N, rectangles - is utilized for
selecting the Best Tiling. The algorithm developed by Thiele and Villemoes was
proved to minimize M [30].

In Fig. 6 we demonstrate the concept of best tiling of the time-frequency plain.
The temporal barcode bellow is composed of three segments: In the middle, we
present a sequence of SBEs from an in-vitro neuronal network [16]. To the left,
we present the same sequence after we have shuffled the order of the intervals.
To the right, we present a periodic signal. On top, the time-frequency plane
is presented by a set of rectangles, whose color represent the energy content
within each of the time-frequency rectangles. The tiling of the periodic region
is straight-forward: since the events are separated by equal intervals, there is a
distinct energetic frequency band, and the rest of the time-frequency plane has
no energy content. The neuronal sequence in the middle has much more variety
within the tiling. There is a mixture of rectangles with different aspect ratios one
beside the other. On the other hand, the randomly shuffled sequence on the left
has a more homogeneous tiling, where adjacent tiles tend to be similar. Further
ahead, we shall define measures that can quantify this effect.

In Fig. 7 we present the tiling of the recorded binary sequence and the shuffled
sequence of Fig. 3. Note how the tilings emphasize the differences in internal

structure between the recorded sequence and the randomly ordered one.

Regularity measure of a sequence
As originally pointed out by Hubermann and Hogg [2], in order to define the
complexity of a sequence, its regularity must first be defined. The regularity is a

measure of the relative location of the sequence on the abscissa between complete
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random (disordered) signals on one edge (regularity=0) and purely periodic (or-
dered) ones on the other edge (regularity=1). Various measures for the sequence
regularity have been suggested, such as the Algorithmic Information Content
[5, 7). We propose that the definition of the regularity should go hand in hand
with the definition of the sequence structural complexity, since the latter has to
be a functional of the former.

The idea is to associate the sequence regularity with the uniformity of its cor-
responding time-frequency domain, namely, with the uniformity of its rectangle
distribution. The latter represents the distribution of the local relative resolu-
tions in time and frequency as selected by the best tiling for extracting maximal
information from the sequence.

From physics perspective, a tiled domain (Fig. 3,5) can be viewed as a mag-
netic material with the rectangles representing its local magnetizations. With
this picture in mind, we first relate the local relative resolution of each rectangle

n with its aspect ratio (At/Af) by:

_ log>(At/A[)
= g o) ?

Defined this way, R,, (the analogue of a local magnetization) is assigned positive
values for rectangles with higher frequency resolution (lower Af) and negative
values for those with higher time resolution. Consequently, it has the lowest
average absolute values for a signal with a wide distribution of tiles and the
highest values for signals with a large majority of tiles with high aspect ratios
(Fig. 8). The normalization of R,, by the logarithm of the maximal aspect ratio
Npin, makes that —1 < R,, < 1. Therefore, we propose the regularity measure RM
to be defined as the average value of R, (the analogue of the total magnetization):
1 i

> Ry (3)

n=1

RM =
Nbin

As demonstrated in Fig.8, RM =2 0 for completely disordered sequences, i.e. se-

quences with Gaussian distribution of intervals, and RM =2 1 for purely regular



ones, i.e strings of one kind of interval. As will be shown later, artificial se-
quences constructed from the periodic and the random ends towards the center
meet around RM = 0.5. RM can also assign negative values for under-dense
(sparse) sequences in which the number of intervals is smaller than \/Ny;,. Such

sequences are not considered here.

Variation factors and Structural Complexity

The regularity observable represents the uniformity of the time-frequency
plane. We now set to define additional complementary observables associated
with the local and global variability of the plane. Local variability will be related
to the amount of diversity within the tiling within local segments of the sequence.
Global variability will be related to the amount of variation between the tilings
among the different segments.

Thus, we begin by segmenting the sequence into words. We quantify the
amount of local variation within each word using an observable named variation
factor (VF). For each word [, we define the variation factor of word to be:

Ne(l) — Np
Np

Zn,m |Rn - Rm| ’ @(Qn ’ Qm)

VF‘Z N ( Zn,m @(qn ’ QM)

) (4)

where the sum is over all neighboring rectangles n,m. Ng(l) is the number of
events (and also intervals) detected within the [-th word, and Ny is an average
over different words of the same length as the [-th one. ©(z), is the heavyside
function; ©(0) = 0 and O(z # 0) = 1.

Finally, we quantify the global variability of the sequence using the variance
of the variation factors between the sequence words. For a sequence segmented
into NV, words, we thus define the structural complexity (SC) observable to
be:

(VF, —VF)? (5)

M=

1
SC =var(VF) = N
w =1

Ne}



Exploring the complexity plane with test Lévy sequences

In order to test these definitions by relating them to a concrete example, we
first devised a method to construct a family of binary time series, spanning from
completely random (disordered) sequences to purely periodic (ordered) ones in
the following manner. For the completely random sequence, the intervals between
the events (inter-event intervals, or IEI) are drawn from a normal distribution
(taking only positive increments). For the purely periodic sequence, the IEIs are
all equal to the period of the signal. Next, we proceed from these two extremes to
the center. From the regular edge, we start with a very narrow Lévy distribution
[16, 23, 24, 25] of the IEI centered around the period of the sequence. Then, the
distribution is modified into a wider one and with a tail shape changing from
exponential to power law decay. From the random edge, we perform the same
procedure but starting with a distribution centered around zero.

The statistical characteristics of the Lévy distribution are controlled by three
parameters: « controls the tail decay of the statistics, v controls the width of the
distribution and ¢ is the most probable event. In our case, J related to the period
of the sequence, while o and 7 relate to the variability of the sequence. In order
to gain better understanding of the relation between the statistical properties of
the sequences (e.g. «, v and J) and their locations on the regularity-complexity
plane, we utilized artificially constructed families of sequences with different Lévy
parameters.

The construction of an artificial sequence is as follows. We draw a set of
numbers out of a Lévy distribution generator with parameters o, v and . This
set, is then rounded and used as intervals between adjacent events in a sequence.
This sequence is considered a realization of the distribution. Naturally, there
could be variations between different realizations of the same Lévy distribution.
Hence, for each set of Lévy parameters, we have constructed 10-20 realizations
and calculated RM and SC for each of them. We thus use RM and SC as the

Regularity and Structural Complexity, and the deviations between the individual
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values as the error bars (< 13%). It is important to point out that shuffling
the intervals of an artificial realization simply produces another realization of the
same Lévy distribution. We have noticed that there was no difference between
RM and SC of the original and shuffled artificial realizations (within error devi-
ations). Our procedure enables us to construct families of binary sequences, such
that each family contains sequences that cover the entire range from disordered
to purely periodic ones, as illustrated in the characteristics shown in Fig.9. Each
family of sequences for a given « is composed of one branch on the random side
(RM < 0.5) for § = 70" (minimum of one bin separation between events). On
the regular side (RM > 0.5), each family has a unique branch for every § # ”0”.
The branches are spanned by varying + and they all meet for v >> ¢§ at a loca-
tion on the border between the random and regular sides and at relatively higher
complexity (as shown in detail in Fig.9).

As demonstrated, the above measure of complexity successfully fulfills the
commonly agreed criteria mentioned earlier [2, 5]. We emphasize though that
the interpretation of the accepted criteria [2, 5] should be taken with caution.
Not all signals can and should be fitted on a single universal curve, but rather
fill the entire complexity plane (SC' — RM plane). Only a continuous family of
signals spanning from random to periodic (as was produced here) can result a
fully extended curve like the one shown in Fig. 9. Different families of sequences

will yield different curves or clusters.

Experimental findings: utilizing the complexity plane in search for
self-regulation in neuronal recordings

As shown, families of artificially constructed sequences exhibit very rich char-
acteristics on the regularity-complexity plane. These characteristics map can be
utilized as a ”grid” while analyzing sequences of unknown Lévy parameters or,
as in our case, sequences originating from a recorded biotic system.

We are now ready to identify features presumably related to self-regulation

11



motifs of biotic systems. As stated previously, using the term self-regulation
we claim that the temporal structures of neuronal networks are not random or
arbitrary. Rather, they originate from internal dynamics and internally-stored
means of control (on individual cell level, neuron-glia dynamics, global chemical
and electric dynamics on the network level, etc.).

In Fig. 10 we show typical examples of the evaluated regularity-complexity
values for recorded sequences of in-vitro neuronal networks. We compare their
values with those of the randomly shuffled sequences from the same recordings.
Also shown are the values of corresponding artificially constructed sequences with
matching a, v and § parameters as the recorded and shuffled sequences. While
these three types of sequences have very similar regularity, the recorded ones have
significantly higher complexity then the shuffled sequences - as is clearly seen in
the figure. The large circles are well above the different shuffled segments repre-
sented by the smaller circles (30 — 45% higher). Moreover, the complexity of the
shuffled sequences are very similar to that of the artificial sets with matching Lévy
parameters (represented by full circles) - the typical difference is within the nat-
ural deviation among different realizations. Clearly, the two presented examples
have some probability (albeit low) of being accidental. However, it is repeatedly
obtained for all the recorded sequences we tested (we have tested a few tens of
sequences from several different cultured networks of different sizes and different
number of neurons from 50 to 1,000,000). We propose that the results described
above, do provide a hint that the observed complexity is self-regulated. In this
regard, we emphasize that for abiotic (non autonomous) activity we found that
the recorded and shuffled sequences exhibit similar values of complexities which

are also similar to that of the artificially constructed ones.

Testing the validity of the analysis on simulation sequences
We wish to further strengthen our argument regarding the ability to detect

the self-regulation motifs of biotic systems. We have thus cross-compared the
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behavior of the neuronal sequences to the behavior of sequences from a simulated
model. These simulated sequences are time-series of the dynamical synapse and
soma model, recently introduced by Volman et.al. [32, 33]. The neurons in our
model network are described by the two-variables Morris-Lecar model [34, 32,
33], which partially takes into account the dynamics of membrane ion channels.

Briefly, the equations describing the neuronal dynamics are:

V = —Lign(V, W) + Luy(t) (6)
(1) = o = )

In the above equations, I;,, (V, W) represents the contribution of the internal ionic
Ca**, K* and leakage currents, with their corresponding channel conductivities

Jca, 9 and gy, being constant:
Lion(ViW) = geameo(V)(V = Vo) + ggW(V)(V = Vi) + g (V = V) (7)

The additional current I.,; represents all the external current sources stimulat-
ing the neuron. These might be, for example, synapse-related signals received
from other neurons, glia-derived currents, currents resulting from artificial stimu-
lations, or any noise sources. The neurons in the model network exchange action
potentials via the activity-dependent synapses, as first described by Tsodyks et.al.
[35].

The output of the simulation is a time-series of action potentials for each
model-neuron, similar in form and characteristic time-scales as our in-wvitro neu-
ronal recordings (and as presented in Fig. 1). Moreover, we have shown in
[32, 33] that our model forms SBEs and the inter-SBEs intervals follow similar
Lévy statistics as our in-vitro neuronal recordings. Thus, the simulated sequence
are analyzed as the neuronal recording - SBEs are identified and a binary sequence
is formed where each bin represents an interval of 400msec.

Fig. 10 presents the RM and SC' values assigned to the simulated binary
sequences from two different simulations. We also present the values assigned

for shuffled sequences, as we have done for neuronal recording. Note that for
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the two simulated examples the simulation values are not higher that the shuf-
fled sequences, implying that there is no hidden internal structure within the
sequences.

However, we must stress that we have found larger sensitivity to the bin width
in the simulated sequences than for neuronal sequences. In other words, for bins
of 800msec we got different values with large variation than for 400msec. This
may imply that in turn there are internal structures in different time scales to be

further studied.

Hierarchical structural complexity

Sequences with hierarchical organization are more complex and pose addi-
tional challenge, especially when each level has its own specific organization and
characteristic time scale. Our new approach bears the promise that it can be ex-
tended to measure the complexity of hierarchical temporal organization as well.
We have already found how to evaluate the time scale of a higher level from the
temporal organization of a given level using our method. As shown in Fig. 11, for
hierarchical sequences with a given basic time scale, the variance of the variation
factor exhibits a maximum at a specific sequence segmentation, i.e. division into
words of specific length. This segmentation length defines the time scale (73;,)
of the next level. Therefore, the regularity measure and structural complexity of
the higher level depend also on the properties of the lower level. This realiza-
tion hints about the way to evaluate the structural complexity of a hierarchical
sequence using a self-consistent (solvability) principle between levels, as will be

presented elsewhere [36].

Conclusions
We have shown that our novel observables of regularity and structural com-
plexity fulfill the following: 1. To follow the foreseen characteristic of an effective

complexity measure, as presented in [2, 5]. 2. To assign a significantly lower
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value to a biotic sequence after its intervals have been shuffled. Our work was
performed on binary sequences created from the recording of in-vitro neuronal
networks. We have compared the complexity values of these sequences with the
values obtained for sequences generated by shuffling the recorded inter-event in-
tervals. We have performed the same analysis on simulated sequences produced
by our model of neuronal dynamics and on artificial sequences constructed to
have the same Lévy statistic parameters. While simulated and artificial sequence
have similar structural complexity values regardless of shuffling, the neuronal se-
quences are assigned much higher values of structural complexity than the shuffled
sequences (Fig.10). We argue that this imply that for a biotic sequence, the order
of the events bears information or provides a template for coding of information.
By shuffling of the intervals, the information encoded in the order of intervals is
lost or at least reduced.

We propose that the high complexity exhibited in the in-vitro neuronal net-
work is consistent with their free and spontaneous activity. Such isolated networks
should be ready to have the full extent of possible templates to sustain the differ-
ent neuro-informatics tasks upon being connected to other networks. Therefore,
complex activity is required to elevate their self-plasticity and flexibility that im-
part them better adaptability and efficiency to communicate with other networks
and to perform imposed tasks as needed [13]. In this regard, it would be impor-
tant to test the complexity of linked in-vitro networks and to compare between
recorded activity from different functional locations of the brain.

Moreover, in upcoming work, we intend to further show that these observables
are useful in generating curves and clusters in the regularity-complexity plane
following the dynamics of the biotic system. For example, during the development
of a network, the complexity values grow as well as the distance between the
complexities of the recorded sequences vs. the shuffled sequences.

Finally, we emphasize that our new method is introduced here in connection

with binary time series (temporal sequences) merely for the ease of presentation.
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Clearly this approach can be extended to general temporal signals and is appli-
cable to spatial series and other informatic strings such as DNA sequences and

written text.
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Figure 1:

The formation of a binary sequence from a multi-neuronal recording of an in-vitro
neuronal network. Top: A raster plot representing the firing events of 27 neurons
over a course of 1000msec. For each neuron, a horizontal ”bar-code” is plotted
where the bars (71”s) correspond to the location of a single firing event. Middle:
A raster plot over a course of 12 seconds. Note that while observing the firing
of the network at this larger time scale, it is clear that the firing is characterized
by synchronized events, lasting 200msecs. The firing of the top figure is the
third synchronized burst (now located at 7secs). Bottom: The synchronized
bursts events (SBEs) are easily identified and thus the network’s sequences can
be transformed into a a new binary sequence. In this sequence, the bars (”1”s)
correspond to the locations of the SBEs and the width of the SBEs sets the basic
time bin.
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Figure 2:

Recorded electrical activity of in-vitro neuronal networks presented via binary
time series of their synchronized bursting events (SBEs). The latter are short
(~ 100ms) events of rapid firing of about all the neurons. Each one is presented
by a bar or 1 on a single time bin. The recorded sequence is presented on three
time scales each is composed of 500 time bins which are 100ms, 1s, and 10s
respectively from top to bottom. Note that each time scale is presented on the
next level by the colored area at the middle. The time series has an hierarchical
temporal organization i.e. the SBEs form clusters that on the higher level form
clusters of clusters and so on [16]

| M|

Figure 3:

Top. A temporal binary sequence of recorded synchronized bursting events (SBE)
of an in-vitro neuronal network [16]. The original recorded sequence is at time
bins of 0.1ms. This sequence is then scaled to time bins of 400ms that correspond
to the width of the neuronal SBE of rapid network activity. Consequently, it is
turned into a binary ”bar-code” representation of the SBE location. The segment
shown here is of length 800sec (Ny;, = 2048). Bottom. A scrambled binary
sequence produced by randomly shuffling the order of the inter-event intervals.
It is clear that the distinct segments of the original sequence are smeared.
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Largest scale = level 3.
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A demonstration of the time-frequency behavior of different wavelet packets. The
mother wavelet used in this case is the simple Haar wavelet. In this example there
are 8 samples, and thus there are 3 scales of decomposition. All the possible
wavelet packets are presented, and each is labeled by the triplet ;. In the
left column, the packets of scale i« = 1 are presented. The bottom four packets
are the 4 translated packets of block j = 0 (low frequencies), and the top four
are the packets of block j =1 (high frequencies). In the middle column (i = 2),
two translated packets of the four frequency blocks 7 = 0,1,2,3 are presented
from bottom to top. The right column is the last level of decomposition (i = 3),
and thus represents the frequency domain. The 8 packets present the 8 possible
periods. This figure is adapted from [28]
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Figure 5:

Example of the 5 possible divisions of a sequence of a length N;,, = 16 (where
each bin is of width 7;, = 1 and the temporal length T is defined by T' = Ny, Tpin )
Left: the top left layer is covered by rectangles with aspect ratio of N, which
represent the highest time resolution (At,;, is equal to 7y;). The lower right
layer is covered by rectangles with aspect ratio of 1/Ny;,, which correspond to
the highest frequency resolution (A fin = 1/(NpinTpin). Note that the minimal
resolution in time, At,,;,, and in frequency, A f,i, satisfy Aty = 1/A fiee and
A frnin = 1/ Atpaq respectively. For a signal of length N,;, there are loga( Ny, ) + 1
different rectangles’ aspect ratios.

Right: A typical Best Tiling. The tiling of the time-frequency plane is comprised
of Ny, packets with various aspect ratios. The best tiling is selected in stages.
First, pairs of horizontally adjacent packets from each layer are compared with
the corresponding vertically adjacent packets of the next layer. The pair that
has the lower sum of M is selected (see Eq. 1). The same procedure is followed
for all layers. Next, selected pairs of adjacent packets are combined into tiles
of twice the area and with values according to the pairs’ sums of M. The first
procedure presented above is performed on the newly constructed tiles and so on
until one tile covers the entire plane. The individual packets that configure this
tile as selected during the different cycles compose the Best Tiling [30].
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Figure 6:

A Best Tiling representation of a binary sequence. At the bottom we present a
binary signal, which is comprised of different types of signals: an artificial periodic
sequence (at the right), a sequence from neuronal network’s SBE sequences (at
the middle) and a sequence comprised of the randomly shuffled intervals of the
SBEs (at the left). Note that the middle area of interest, with a unique ordered
sequence of 1s, is tiled in a non-trivial way, 7.e. a mixture of packets’ with more
various aspect ratios. On the other hand, in the randomly shuffled sequence
adjacent tiles tend to be more similar and the periodic segment is tiled in a very
uniform and straight forward manner.
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Figure 7:
Temporal binary sequences (bottom) and their corresponding tiled time-frequency
planes (top). The SBE binary sequence (left) and the shuffled binary sequence
(right) are correspondingly the top and bottom sequences from Fig. 3.
Left. A temporal sequence of recorded synchronized bursting events (SBE) of
an in-vitro neuronal network [16]. The segment shown here is of length 800sec
(Npin, = 2048). In the above time-frequency plane, the horizontal axis is the time
domain and the vertical axis is the frequency domain. The color of each rectangle
represents the value of its corresponding ¢,,. The color code ranges from white to
red, the highest energy. It should be visible that the tiling of the plain follow the
temporal location of the bursting regions while creating a complex pattern with
different aspect ratio of tiles.
Right. The corresponding scrambled sequence and its time-frequency plane. The
inter-events intervals of the neuronal sequence are randomly shuffled. It is clear
that the distinct segments of the original sequence are smeared, and that a larger
portion of the time-frequency plane is tiled by neighboring tiles with equal aspect
ratio.

=

—

26



L
03.) 17 i
G ([
£ 2 *
([
([
205 ° 3 :
a °
)
0 1
Y [
Completely random Completely regular
> <
1
e
TEL RS ]
= I I I

[ AL

=
=

Figure 8:
At the bottom we present four examples of binary sequences, from the artificially
constructed family of signals, and their Best Tilings. The signals are labeled 1
to 4, where 1 is a random signal and 4 is a periodic one. Above we present the
regularity measure RM (Eq. 3) of the tilings. Note that the RM of the random
signal is close to zero, and that of the periodic signal is close to 1.
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Figure 9:

Characteristics-map for families of artificially constructed sequences of intervals
with both zero mean and finite-mean symmetric Lévy distributions. Numerous
realizations were constructed for each set of Lévy parameters («, v and §), and
we present RM and SC using std(RM) and std(SC) as errorbars. Left: Three
families for &« = 2.0; 1.6 and 1.2 on both the random and regular sides (6 = 0 and
20 respectively). The variable 7 is used to span each characteristic. For random
ones, it spans from low regularity at v = 1 towards higher regularity and higher
complexity with increasing . For regular characteristics, v = 1 corresponds
to high regularity (RM — 1) and increasing of v lowers the regularity while
increasing the complexity. For a given « the regular branches (§ # 0) meet the
random branch (6 = 0) at high complexity and intermediate regularity. Right:
The behavior of the regular branches for the same « and different § = 5, 10, 20.
For comparison, the random branch with the same o and § = 0 is also plotted.
Note that all the regular branches meet together at the same location where the
random branch crosses.
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Figure 10:

Utilizing the complexity plane to study recorded neuronal activity and simulated
sequences. The solid black characteristics are those presented in the left side of
figure 9. The large blue circle represent the RM and SC of different segments
of an in-vitro experiment of 10,000 neurons (over the course of an hour). The
corresponding errorbars represent std(SC'). The smaller blue circle represent the
mean values assigned for different shufflings of each of the segments. The blue
solid circle indicates the behavior of the artificial set of parameters that were
fitted to the distribution of the recorded intervals [16]. Note that the shuffled se-
quences are repositioned very closely to the corresponding artificial sets. In red,
green and purple circles, we present similar sets for different experiments (net-
works of different number of neurons: 50, 10,000 and 1,000,000 respectively). In
brown, we present two sets of simulations with similar time scales. The large tri-
angles represent the RM and SC' of the simulation output, and the corresponding
smaller triangles represent the values assigned for the shuffled sequences.
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Figure 11:

The variance of the V' F' as calculated on segments (words) of the signal for dif-
ferent lengths of segments (the logs of the length is the horizontal axis). The
dots are for a recorded time series of neuronal networks electrical activity as in
Fig. 3. The circles are for a constructed signal with no hierarchical temporal
organization. The peak for the neuronal time series at word length of 2° = 512
indicates the crossing to the next level of temporal organization.
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