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                                                       Abstract 
 
We propose that information processing in computational bio-networks from the 
genome to the central nervous system (CNS) is performed in the space of functional 
correlations. To test this hypothesis, a novel functional holography (FH) approach is 
introduced for analyzing the complex activity of biological networks in the space of 
functional correlations.  Our approach is guided by the "whole in every part" nature 
of a holograms – a small part of a hologram will generate the whole picture but with 
lower resolution. The analysis starts by constructing the space of functional 
correlations from the similarities between the activities of the network components by 
a special collective normalization, or affinity transformation.  Using dimension 
reduction algorithms like PCA, a connectivity diagram is generated in the 3-
dimensional space of the leading eigenvectors of the algorithm. The network 
components are positioned in the 3-dimenional space by projection on the 
eigenvectors and connected with colored lines that represent the level of the 
similarities. Temporal (causal) information is superimposed on the resulted diagram 
by coloring the node's locations according to the temporal ordering of their activities. 
By this analysis, the existence of hidden manifolds with simple yet characteristic 
geometrical and topological features in the complex biological activity was discovered 
from cultured networks through modeled neural networks to recorded  human brain 
activity. We propose that our findings hint that  the functional holography analysis is 
consistent with a new holographic principle by which biological networks regulate 
their complex activity to perform information processing in the space of functional 
correlations.     
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1. Introduction 
 
The activity of complex, multi-component computational biological networks is often 
represented in terms of similarity matrices and their corresponding connectivity diagrams. 
Examples range from metabolic pathways, through gene expression, to recorded brain 
activity. In general, the matrix element Si,j is the computed similarity between the activities 
of components i and j). The similarity can be based on different measures such as cross-
correlations, coherences and mutual information, depending on the studied network. In the 
case of gene-expression measurements using DNA-microarrays, the similarity is usually 
the inter-gene expression correlation [1], while in recorded brain activity (e.g. EEG, MEG 
and ECoG), it is the inter-channel coherences [2].  
 
A common approach in the studies of similarity matrices is to apply clustering algorithms 
to identify underlying sub-groups (clusters) of components that have higher inter-
similarities [3]. Many advanced algorithms have been devised according to the specific 
systems and the assumed motifs that are looked for. In the dendrogram clustering 
algorithm, for example, the matrices are reordered to place together components with 
higher similarities. In the principal component algorithm (PCA) and its various variants, 
like SVD and ICA, the components are projected on a low dimension manifold whose axes 
are evaluated to capture most of the relevant information in the similarity matrix. The 
clustering algorithms are based on the implicit notion that the similarity matrices represent 
a high dimension space of similarities: N-dimension space for a network composed of N 
components. 
 
Often, the similarity matrices are also visualized by the construction of their corresponding 
connectivity diagrams, in which a line is drawn between each two component whose 
similarity is above some threshold. Usually, the lines colors or gray levels represent the 
level of the similarities.  For hard-wired networks (e.g. cultured neural networks), the 
diagram is constructed according to the components positions in the real network, by 
placing them on the diagram according to the physical distances. Both for hard-wired 
networks and distributed networks like gene-networks, the connectivity diagrams can be 
presented as similarity circles in which the components are placed along a circle and linked 
with lines that represent the similarities. 
 
In many cases, one can also extract information about the temporal ordering in the activity 
of the different components, like phase coherences in recorded brain activity or timing 
between neurons firing in cultured networks [4]. This temporal information can be 
represented as a temporal ordering matrix whose Ti,j describes the relative timing or phase 
difference between the activities of components i and j.  
 
There has been rapid progress in the fields of data mining and bioinformatics, with new and 
more advanced visualization approaches and clustering algorithms being continuously 
developed [5].  Yet, many of the fundamental issues related to the interpretations of the 
results or, more specifically, the “reversed engineering” from the observed activity to the 
underlying causes are still to be resolved. The development this method has been motivated 
by the following goals: 
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1. To relate the similarity in the activity of two components to their functional dependence.  
2. To relate the similarity between two components to the similarity of each with all other 
components. 
3. To compensate for the common limitation incurred by measuring the activity of a 
fraction of the network components only.  
4. To reduce the effect of the inherent noise both in the measurement procedure and in the 
biological activity itself   
5. To identify underlying simple functional motives in the observed complexity. This quest 
was motivated by the assumption that such motives must exist if the biological network is 
to be able to regulate its own complexity. 
6. To connect the observed temporal ordering (activity propagation) to underlying causal 
motives (information propagation and causal connectivity). 
7. To identify functional sub-groups (functional clusters) and to reveal the functional 
connectivity between these sub-groups. 
8.  To be able to compare the activity (similarity matrices) of two different networks or 
different modes of behavior of the same network.   
  
The functional holography (FH) approach is a mathematical concept of visualizing the 
network in an abstract 3-dimensional space of functional correlations calculated from the 
similarity matrix. In other words, we construct a dual network by placing the components 
in the abstract space and linking them according to the similarities. The mathematical 
procedure involves the following steps: 
 
1. Evaluation of the similarity matrix Si,j between component i and j.   
2. Computation of the similarity distances Di,j – the Euclidian distance between the position 
of components i and j in the N-dimensional space of similarities. 
3. Collective normalization of the similarities. The above defined distances are used to 
normalize the similarities and obtain functional correlations or affinities. That is,  
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In other words, we transform the similarity matrix to a new affinity matrix Ai,j. 
4. Dimension reduction - projecting the N-dimensional affinity space onto a 3-dimensional 
space that captures the maximal information, using a standard clustering algorithm like 
PCA (used here), SVD or ICA. The axes of the space are the three principal eigenvectors of 
the PCA, and the components position is determined by the projection of the affinity matrix 
on these three eigenvectors. 
5. Construction of a functional manifold – a connectivity diagram in the 3-dimensional 
space generated by linking the nodes (component positions) by the original (non-
normalized) similarities. In addition (optionally), to capture also the topological properties 
of the manifold, a curved surface is interpolated between the nodes.  
6. Inclusion of temporal (causal) information – the activity propagation on the manifold. 
When information is available, the temporal ordering matrix is evaluated. The relevant 
information can be added to the manifold in two ways: 1. Adding arrows to the links 
between the nodes according to Ti,j. 2. evaluating a collective temporal ordering of all the 
nodes and marking their relative timing by colors or gray levels. 
7. Holographic comparison and superposition. The idea is to compare the activity of two 
networks by projecting the affinity matrix of one network on the PCA leading vectors 
computed for the other, and vice versa. Two modes of behaviors of the same network may 
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be compared the same way. By superposition, we refer to the projection of each affinity 
matrix on the mutual PCA leading vectors computed for the combined matrix. 
8. Holographic zooming. If we want to magnify a part of the manifold in order to capture 
more details, simple re-scaling used to magnify a picture will not do. Instead, it is 
necessary to perform a new iteration of the analysis, starting with a sub-similarity matrix 
for the cluster of components at the corresponding part of the manifold to be magnified. 
 
The stages (5) - (8) of this functional holography approach are generally applicable to the 
similarity matrices directly, i.e., they do not depend on the proposed functional 
normalization. The idea of holographic comparison is expected to be very efficient in many 
applications, like comparing gene-expression data from different populations of organisms 
or groups of people.  
 
 
In the next sections each of the above stages in the FH method are illustrated and described 
in detail. The recorded spontaneous activities of cultured neural networks are employed as 
a model system to illustrate the power of our new approach in providing a satisfying 
framework for achieving the goals specified above. We also employ our method on a 
model neural network activity and show its power in detecting inhibitory neurons. 
 
Some preliminary results of analyzing ECoG recording of human brain activity during 
seizure (Ictal) and between seizure events (inter-Ictal) are presented. In the discussion, it is 
proposed that the success of the method in capturing the underlying functional and causal 
motives might imply that the activity of neural networks is self regulated by an underlying 
simple, low dimension manifolds in the space of functional correlations.   
 
 
2. Evaluation of similarity matrices for cultured networks activity 
 
Cultured networks provide relatively simple and well-controlled model systems for 
investigating long term (weeks), individual neurons activity at different locations by using 
a multi-electrode array [6,7]. The networks whose activity is analyzed here are 
spontaneously formed from a dissociated mixture of cortical neurons and glia cells from 
one-day-old Charles River rats. The cells are homogeneously spread over a lithographically 
specified area of Poly-D-Lysine for attachment to the recording electrodes. Consequently, 
the neurons send dendrites and axons to form a wired network. Although this process is 
self-executed with no externally provided guiding stimulation or chemical cues, a relatively 
intense dynamical activity is spontaneously generated within several days. The spontaneous 
activity of cultured networks is marked by the formation of synchronized bursting events 
(SBEs) - short (~200ms) time windows, during which most of the recorded neurons 
participate in relatively rapid firing. The SBEs are separated by long intervals (above 
seconds) of sporadic neuronal firing.  
 
 
As can be seen from Fig. 1, each SBE has its own internal pattern of neuronal firing. Both 
the firing rate and the time-series statistical properties can greatly vary from neuron to 
neuron. While some neurons fire only 1-2 spikes/SBE, others can fire ever 20 spikes/SBE. 
In addition, the individual neuron activity also varies from SBE to SBE. Hence, to take into 
account these variations in the firing rate, one can define the averaged density of neuronal 
firing during the SBE, by averaging of the activity over many synchronized bursting 
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events. An example of such averaged density representation is shown in Fig. 1. It is also 
seen that the averaged density reflects fairly well the general structure of the SBE. 
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Figure 1: Top: Formation of SBEs in the recorded activity of cultured networks. 
The time axis is divided into 10-2s bins. Each row is a binary bar-code representation 
of the activity of an individual neuron, i.e. the bars mark detection of spikes. Note that 
each neuron has its' own pattern of activity within a given SBE, and each SBE has its' 
own internal pattern of neuronal activity. Bottom left: zoom into the synchronized 
bursting event. During the SBE, each neuron has its specific spiking profile. Bottom 
right: the averaged density representation of a SBE. 
 
 
To evaluate the similarity matrices each SBE can be described as a matrix composed of N 
vectors, one for each neuron. The vector Xi(t), represents the temporal activity, or firing 
rate of neuron i, during the time window of the SBE. See ref [8] for more details. 
 
To evaluate the inter-neuron similarity matrix, the Pearson Correlation coefficient [9] is 
calculated between the bursts of each pair of neurons according to the standard definition: 
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Where Xi and Xj are the activities of neurons i and j with the corresponding means µ i and µ j 
and sample standard deviations (STD) �i and �j. . The correlation coefficients for all pairs 
of channels are computed, creating the correlation matrix Ci,j. Note that, by definition, the 
correlation matrix is symmetric (Ci,j = Cj,i) and its diagonal is 1 (Ci,i = 1). Next, the 
similarity matrix is evaluated by averaging the inter-neuron correlations over a sequence of 
SBEs. That is, 
 
     , ,i j i j SBEsS C�� �     (3)   
                            
A typical example of such inter-neuron similarity matrix is shown in Fig 2a. Frequently the 
correlation matrix is mapped into a connectivity diagram in which the locations of the 
neurons in real space are connected by colored lines whose colors indicate the level of the 
correlations (Fig 2b). 
 
To test the self-consistency of the above definition, we evaluate a standard deviation matrix 
whose STDi,j element is the standard deviation of Ci,j over the corresponding sequence of 
SBEs.  The deviation is typically smaller than ~0.4 and its average is ~0.2. Moreover, using 
normality tests like the Lilliefors normality test [10] is obtained. For most pairs of neurons 
the correlations are distributed normally. 
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Figure 2: Left: A typical example of inter-neuron similarity matrix. Right: The 
corresponding standard deviation matrix computed as explained in the text. Left: The 
connectivity network in physical space – a projection of the inter-neuron correlation matrix 
gives information about the dependence of correlation on the physical location of the 
neurons.  In the network, each pair of electrodes is connected by lines whose colors 
indicate the level of the correlation between the two neurons. In the figure we show only 
lines above some threshold. 
 
3. The affinity transformation - collective normalization 
 
The similarity matrix of N recorded neurons from a cultured network describes an N-
dimension space. The position of neuron i in this space is set by the vector iS

�
- its 

similarities Si,j with all other neurons j. Accordingly, the similarity distance Di,j, between 
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neurons i and j, is simply the Euclidian distance between their positions in the similarity 
space. That is1, 
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As was mentioned in the introduction, the similarity distances are used for collective or 
functional normalization of the similarities. The reason the term “collective” is used has to 
do with the fact that the similarity distance is a functional of the differences between the 
similarities of the two neurons with the other neurons. The distance is larger if they have 
different similarities, and vice versa.  
 
The functional normalization, or affinity transformation, is the evaluation of the new 
affinity or functional correlation matrix defined as: 
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Formally, Di,i=0 and hence the diagonal elements Ai,i are ill-defined. However, due to the 
inherent neuronal plasticity and to noise, there should be uncertainty in the auto-correlation 
and therefore in the neurons positions in the similarity space. The latter can be translated 
into position uncertainty and thus into finite Ai,i, which is related to the effective noise level 
and neuronal plasticity, and thus has to be properly adjusted to the noise level as will be 
detailed elsewhere. Here, for simplicity, A0�1/C0, where C0 is taken as the estimated noise 
level in the neuron correlations.  
 
Since the similarity distances represent a collective property of all channels, the above 
procedure can help to capture hidden collective motifs related to functional connectivity in 
the network behaviors. 
 
4. Dimension reduction   
 
In the previous section it was mentioned that the similarity matrix can be associated with an 
N-dimension space in which the neuron i is positioned according to its vector iS

�

. Similarly, 
the affinity matrix is also associated with an N-dimension space of functional correlations. 
Correspondingly, the position of neuron i in this space is set by a vector iA

�

 - the vector of 
affinities of this neuron with all other neurons.  The analysis is, guided by the assumption 
that most of the relevant information can be obtained in a low dimension space embedded 
in the larger one. To test this hypothesis we evaluate the PCA eigenvalues of an affinity 
matrix that has been evaluated for the observed activity of a cultured network as is shown 
in Fig 3a. The PCA provides a method for identifying new N directions in the N-
dimensional space that are ranked (ordered by their eigenvalues) according to the level of 
standard deviations in the neuron positions [10]. The spectrum shown in Fig. 3b indicates 
                                                
1 Note that in ref [4], in the definition of the distances D(i,j) there is division by N ; both definition are 
equivalent.   
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that most of the information in the N-dimensional space of the functional correlations can 
be captured after dimension reduction to a 3-D space whose axes are the three leading PCA 
eigenvectors. The position of neuron i in this reduced space (Xi,Yi,Zi) is set by the 
projection of iA

�
 on the first three PCA eigenvectors (Fig 3a).  
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Figure 3: The dimension reduction -projection of the neurons on the 3-D space of the PCA 
leading eigenvectors of network (I). Left – the projection for the affinity matrix. Right – The 
PCA eigenvalues of an affinity matrix for cultured neural network activity whose similarity 
matrix is shown in Fig 2. We will refer to this network activity as (I) in the next figures. In 
this network the number of recorded neurons is N=33. The eigenvalues are for the PCA 
eigenvectors that are ordered according to the values. 
 
5. From clusters to manifolds 
 
Projection of the matrix elements on a low dimensional space (usually 1, 2 or 3), is 
common in dimension reduction using clustering algorithms. Since the motivation is to 
look for sub-groups or clusters in the collection of components, identification of the 
clusters is the end result. Guided by the assumption that there are underlying functional 
manifolds, (stage 5 of our method) the neuron positions are next linked by the ‘naked’ (un-
normalized) similarities above some threshold, as shown in Figure 4. The idea is to add 
information about inter- and intra-clusters, information which is lost by the projection of 
the original matrix on its corresponding low dimension space.  The result is a functional 
connectivity diagram in the abstract space of leading PCA eigenvectors.  The term 
functional is used to emphasize that the diagram includes information about the functional 
correlations which determines their position in the diagram. This is to be distinguished 
from the ordinary connectivity diagrams in which the neurons are positioned according to 
their physical locations in the network. Interestingly, the strong links (higher levels of 
similarities) form a bundle with simple geometrical organization and simple yet 
characteristic topology. The results demonstrate that by bringing back some of the 
information lost in the dimension reduction we find additional features beyond clustering. 
Keeping in mind that the recorded neurons are just a small sample of the neurons in the 
network, we suggest interpolating between the neuron positions according to the similarity 
links to extract the underlying backbone or the functional manifold of the diagram. It is 
important to stress that the affinity transformation (the functional normalization) is 
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essential for capturing the hidden manifold - a similar connectivity diagram constructed 
directly in the 3-D PCA space of the similarity does not show such underlying manifold.  
 
The topology of the manifold of network (II) is that of three perpendicular horseshoes such 
that the middle one has a joint segment with each of the other two. It is also topologically 
equivalent to a one turn helix but with a curvature that is not uniform, i.e. it is higher at 
three specific locations that correspond to the locations of the clusters.  It is emphasized 
that functional manifolds with the same topology, which is simple yet of very specific 
characteristics, can be identified also in recorded in vivo activity, including from the human 
brain. 
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Figure 4: Functional manifolds in the 3-D space of leading PCA eigenvectors. The 
diagrams at the top show two angles of view of the manifold for network (I) shown in Fig 3. 
By linking the nodes with similarities (above 0.5) new motifs are revealed, as explained in the 
text. The most pronounced one is the identification of a quasi 1-D manifold with a specific yet 
simple topology, as shown in the bottom right figure. The manifold at the bottom left 
illustrates that this motif is unlikely to be a coincidence as it is exhibited by other networks. 
The black line is the extracted quasi 1D manifold (backbone), as explained in the text. 
 
 
6. From manifolds to causal manifolds 
 
As was mentioned in the introduction, the similarity matrices do not include essential 
information about the networks behavior – the temporal propagation of the activity relative 
timing between the components. This additional information (when available) is usually 
presented in temporal ordering matrices whose Ti,j element describes the relative timing or 
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phase difference between the activity of components i and j.  There are various methods to 
evaluate the temporal ordering matrices. In studies of ECoG recorded brain activity, 
usually it is calculated in terms of ‘phase coherences’ – the relative imaginary parts of the 
Fourier transform of the activity of channels i and j. 
 
Recently, a new notion – the "temporal center of mass", or temporal location of each 
neuron in the SBE time window – was proposed [4]. The idea is to regard the activity 
density of each neuron i as a temporal weight function so that its temporal center of mass, 
Ti

n , during a SBE (n) is given by: 
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Where the integral is over the time window of the SBE, and Tn  marks the temporal location 
of the n-th SBE which is the combined "center of mass" of all the neurons As shown in Fig 
5, the temporal center of mass of each neuron can vary between the different SBEs. 
Therefore we define the relative timing of a neuron i to be Ti�<Ti

n>n – the average of the 
sequence of SBEs. Similarly, we define the temporal ordering matrix as: 
 

,
n n

i j i jT T T� �              (7)                                         

 
Looking at the activity propagation in real space (Figure 5), it can be seen that it starts in 
the center of the network near electrodes (11, 19 ,27) and propagates in time in two 
directions – electrodes (3,4) and (36,37) to terminate on two opposite sides near electrodes 
14 and 15. Interestingly, when the temporal information is superimposed on the neurons in 
the 3-D space of leading PCA eigenvectors, the activity propagates along the manifold in 
an orderly fashion from one end to the other (Fig 5). For this reason, it is proposed to view 
the resulted manifold which includes the temporal information as a causal manifold2.   
 
  
 

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

        

−4
−2

0
2 −4

−2

0

2

4

−2

0

2

19

1111
27
27
27

1515

44544

114
1414

14

14

20

14

14
45

20318
44

43
20

444

 
 

                                                
2 In some cases, the functional connectivity diagrams are more complex, and additional visual perception 
about the causal features of the activity is obtained by interpolation of a curved surface between the neuron 
positions, as described in ref [4]. Doing so resulted in a 2-D causal manifold in which the activity propagates 
mostly along the edges. 
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Figure 5: Inclusion of the temporal information.  Top Left – illustration of the activity 
propagation in the physical space of the networks. At each neuron position, we mark by gray 
level the values of its corresponding Ti

n for all the SBEs in the sequence. Top right – 
illustration of the neuron timing Ti superimposed on the functional connectivity diagram in 
the 3-D space of leading PCA eigenvectors. The timing is marked by the gray level at the 
neuron position. In the bottom right picture we present a schematic illustration of the notion 
about the activity propagation along the quasi 1D manifold. The bottom left picture shows an 
additional example of real network (the one shown in the bottom left picture in Fig 5), with 
arrows that indicate the temporal ordering added to emphasize the directionality. As one can 
see, there is clear correspondence between the shape of the manifold, the connectivity of the 
neurons and the propagation of the signal. Bottom – more examples of networks that exhibit 
causality in the affinity manifold. 
 
 
 
7. Functional holography of simulated activity 
 
The generation of synchronized bursting events series, as well as some of its salient 
statistical properties, is successfully captured by the generic dynamical model of neuronal 
networks devised by Volman et al. [19]. In this model network, both neurons and synapses 
connecting them are described as dynamical elements (Appendix A). It has been 
demonstrated that within this modeling framework, it is possible to recover many salient 
features of cultured networks activity [19]: The model network spontaneously generates 
synchronized bursting events, which are separated by long (above seconds) periods of 
sporadic activity. The internal dynamics of neurons during the SBE are also well- captured 
by such a model neuronal network with uniform synaptic connectivity. In particular, the 
inter-neuron correlation matrix, when projected onto a physical space of a model network, 
yields a network with uniform connectivity. The above construction may also be compared 
with the actual matrix of synaptic strengths projected onto a physical space of networks' 
electrodes. For a pair of mutually connected neurons, however, one must consider two 
distinct cases, as the strength of the connection from i-th to j-th neuron is not necessarily 
the same as the connection from j-th to i-th neuron. Both of these cases are shown in Figs 
6a and 6b, to demonstrate the asymmetry in the neuron-neuron connectivity. The 
corresponding inter-neuron correlation matrix of the network’s simulated activity is shown 
in Fig 6c and its projection on a connectivity network in Fig 6d. 
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Figure 6. The internal dynamics of neurons during the SBE, for a simulated network with all-
to-all synaptic connectivity. We show the results for 12 neurons randomly sampled from a 
model network. Because pairs of neurons in the model network are reciprocally connected, we 
show the maps of synaptic connectivity for the cases of a) Aij matrix and b) Aji matrix. c) The 
inter-neuron correlation matrix for the model unitary network. Note that the structure of the 
matrix is block-like, with larger block corresponding to the excitatory model neurons, and 
smaller (upper) block - to the inhibitory ones. d) Physical space projection of the inter-neuron 
correlation matrix, obtained for the activity of model unitary network.  
 
We apply the function holography to the models activity in the same why we do it for the 
recorded network activity (described in the previous sections). In figure 7 we show the 
functional-connectivity diagram of the model activity. As can be seen in the top images, the 
method can detect the difference between the inhibitory neurons (colored red) and the 
excitatory ones (colored blue). The inhibitory neurons create a sub-structure which is 
separated from the large structure of all the other neurons. Also, a causal structure is 
detected although mach less regulated then in the cluttered network activity (bottom 
images).  
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Figure 7:  The causal manifold of the uniform network model. Top – two different viewing 
angles of the models activity manifold. Color represents the type of neuron – where red 
neurons are inhibitory neurons and blue ones are excitatory. As can be seen – the manifold 
exhibits the difference between the two neuron types. Bottom – Supper imposing the activity 
timing Ti  of each neuron.   
 
 
8. Functional holography of  human brain activity 
  
In the above sections, we presented examples of manifolds computed for the recorded 
activity of cultured neural networks. Despite the artificial nature of these networks, the 
manifolds exhibit simple yet characteristic geometrical and topological features. In an 
attempt to rule out that these are mere artifacts generated by the method, the recorded 
activities of chemically stressed networks were analyzed. The results published in ref [4] 
are reassuring – the generated manifolds lost the simple characteristic features of the 
normal activity. In another, more direct test, a network was dissected into two active 
networks, revealing that the manifold in the affinity space also split into two. An even more 
convincing feasibility test of the new method described here involves analysis of recorded 
human brain activity from epileptic patients who are candidates for brain surgery. The 
method can also be applied to experimental seizure studies that are gained much attention 
[11].  
 
The occurrence of epilepsy is rising and is estimated to affect, at some level, 1%-2% of the 
world population [12]. Due to availability of many anti-epileptic drugs, approximately 80% 
of all epileptic patients can be kept seizure-free. But for the remaining 20%, the only cure 
is surgical resection of the seizure focus [13,14]. One of the most challenging tasks facing 
epileptologists is precise identification of brain areas to be removed so that the problem can 
be cured with minimal damage and side effects. Often, the precise location of the 
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epileptogenic region remains uncertain after obtaining conventional, non-invasive 
measurements such as electro-encephalogram (EEG) and magneto-encephalogram (MEG) 
can not provide sufficient information because of the relatively low spatial resolution of 
these methods. In these cases, the activity is directly recorded by the electrocorticography 
(ECoG) procedure in which the recording electrodes are placed directly on the brain 
surface as is shown in Figure 8. The common approach to analyze the ECoG recording is 
by evaluation of the coherences between each pairs of electrodes. These coherences (the 
similarities for this case) are the overlap of the Fourier transform of the recorded voltage.  
Next a connectivity diagrams are constructed and the similarity matrices are analyzed using 
clustering algorithm as is illustrated in Figure 8. The idea is to compare the resulted 
connectivity diagrams (or the similarity matrices), during epileptic seizure (Ictal) and 
between episodes (Inter-Ictal) to learn more about the cause of the epilepsy. At present, the 
functional interpretation of these advanced methods is still not clear especially since the 
outcome matrices and connectivity diagrams appear more complex than the raw data. 
Hence, much effort is devoted to improve these methods and to the search for new ones. 
 
In view of the above, the idea that functional holography can reveal the existence of hidden 
causal manifolds embedded within the complexity of the recorded brain activity was tested. 
And if so, whether it can also provide an efficient tool to distinguish between the inter-Ictal 
and the Ictal activities. Typical results are presented in Figure 9. The first four pictures 
show the manifolds for the similarity matrices in Figure 8. The manifold of the inter-Ictal 
activity has a very simple topology of almost circular horseshoe like part and another bar 
perpendicular to its plane and position at the center of the horseshoe.  During Ictal the quasi 
1D property of the manifold gives way to a quasi 2D topology on the surface of a sphere. 
Albeit the new manifold has more complex topology as could be expected, it retains some 
of the features of the inter-Ictal one when viewed from specific angle.  
 
This example demonstrates the power of the new method to identify hidden motifs in the 
complex brain activity. Preliminary analyses also indicate that causal features are captured 
when the temporal (i.e. phase coherences) information is imposed on the manifolds. These 
results bear the promise that functional holography might become a valuable epileptogenic 
diagnostic procedure as well as research approach. 
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Figure 8:  Illustration of the common approach in analyzing ECoG recording of human 
brain activity. Top left picture shows a set of electrodes placed on the surface of the brain (the 
frontal lob in this case).  The two pictures in black and white show the voltage recorded from 
each electrode as function of time. The top one is for inter-Ictal activity and the bottom one is 
for Ictal (during seizure). The middle two pictures show the connectivity diagram constructed 
according to the coherences - the color of each link between two electrodes indicate the level 
of coherence (blue low and red high). The picture on the left is for inter-Ictal activity and the 
one on the right is for Ictal. The bottom pictures show the corresponding dendrogramed 
similarity matrices. Note that in this case the coherences are used as the measure of the 
similarities. See ref [2] for more details.    
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Figure 9:  Examples of causal manifolds for ECoG recorded human brain activity. All four 
pictures are for the inter-Ictal and Ictal activities shown in Fig 8. The ones on the left are for 
inter-Ictal and those on the right are for Ictal. For each case we show the manifold from two 
angles of view.  

 
9. Holographic zooming 
 
Often, one is interested in more details about a part of the manifold. Such ‘zooming in’ can 
be performed but not simply by re-scaling of the axes as done, for example, when a part of 
a picture is magnified. The idea of the holographic zooming is to take advantage of the 
collective normalization in the following way: 1. Identify the part of the manifold to be 
magnified, i.e., identify the cluster of relevant component; 2. Isolate the sub-similarity 
matrix for the cluster; 3. Perform a second iteration on this matrix, i.e., the affinity 
transformation, dimension reduction and construction of a manifold. The latter is the 
magnified part of the manifold. 
 
In Figure 10 another example of ECoG recoding analysis is presented. In this case (a 
different patient) the recording was from a larger area (a different set of electrodes that 
covers a larger surface was used). Usually, recording from a larger surface is needed when 
it is harder to locate the seizure focus or there are multiple foci. The manifold for the larger 
area recording is composed of two perpendicular manifolds, each with a horseshoe like 
topology. Using the holographic zooming on one of them reveals that its topology is that of 
a two perpendicular ‘Siamese horseshoes’ (one joint arm).  
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Fig 10. Holographic zooming. The pictures show the holographic zooming for a different 
set of recordings from a different patient. The recordings in this case were from a larger area of the 
brain. The similarity in this case was calculated by evaluation of the correlations between the voltage 
traces from each electrode.  Note that the manifold shown on the left picture is composed of two 
perpendicular horseshoes like manifolds. The picture on the right shows a holographic magnification of 
the left one. The magnification reveals that this manifold is also composed of two perpendicular 
horseshoes but with a joint leg.  

 
 
10. Concluding remarks   
 
A new method for analyzing the complex activity of biological networks is presented, 
guided by the notion of holograms. In a holographic process, the information describing a 
3-D object is encoded on a two-dimensional photographic film, ready to be regenerated 
into a holographic image or hologram.  A characteristic feature is the ‘whole in every part’ 
nature of the process – a small part of the photographic film can generate the whole picture, 
but with fewer details. Another property is high tolerance to noise and high robustness to 
lesion: even with many imperfections or with several pixels removed, the image of the 
object as a whole is still retained in the hologram. To magnify a part of the original 3-D 
object, one needs to produce a new photographic film for the part to be magnified. Another 
related feature is the holographic superposition – when illuminated together, (placed side 
by side) two holograms can generate a superposition of the corresponding two 3-D objects.  
Superposition of objects can also be made by imprinting the images of the two (or more) 3-
D objects on the same holographic film.   These and other special features of hologram are 
due to the way the information is encoded on the films – not a direct projection of the 
picture in real space but in the correlations between the pixels. These are converted back to 
a picture in three dimensions by proper illumination.  
 
The above properties of holograms guided the development and are the rational behind the 
functional holography method presented here. The term functional is to indicate that the 
analysis is in the space of functional correlations that serve the analogue role to the long-
range correlations imprinted on the photographic film (by the use of the interference of 
coherent lights).  The methods shown here share the special features of holograms – 
tolerance to noise, robustness to lesion, holographic superposition and holographic 
zooming. 
 
 As feasibility tests the method ability to capture hidden motifs in complex activity was 
used to analyze two extreme examples of neuronal networks – the spontaneous activity of 
cultured neural networks and recorded human brain activity. In both cases the analyses 
revealed the existence of hidden low dimension manifolds in the high dimension space of 
functional correlations. The manifolds have surprisingly simple yet characteristic 
geometrical topological and causal features. Using holographic superposition different 
modes of the network activity resulted in an entangled manifold composed of a 
superposition of the individual modes manifolds.  Using holographic zooming on recorded 
brain activity we demonstrated how additional hierarchical motifs can be revealed. 
 
The results presented here aimed to demonstrate the potential of the method as a new 
valuable procedure for diagnosis of biological networks activity. Such diagnostic 
procedures are needed for the interpretation of recorded brain activity using EEG, MEG, 
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ECoG and fMRI [15].  For example, the purpose of ECoG is to localize a suspected seizure 
focus in the cerebral cortex for patients who are candidates for surgery.  The decision of 
whether to remove or to leave a marginally active area of cortex intact elicits a wide range 
of opinions from clinicians. Although it is expensive and manpower intensive, ECoG 
remains the cardinal method for determining the anatomic site of seizure onset, yet even 
this method of direct recording is not always conclusive. When the seizures involve the 
medial temporal lobe or are associated with a demonstrable neoplastic process, surgery is 
successful in about 60-70% of cases. However, when the seizures are suggestive of extra-
temporal foci, or no lesion can be identified by MRI and fMRI, the success rate of surgical 
interventions drops precipitously to less than 50%. This poor cure rate for extra-temporal 
seizure implies that the current conceptualizations about the disorder are inadequate 
[16,17,18,27], and more accurate models of epileptic processes and better diagnostic 
procedures are needed. As was mentioned earlier, functional holography might provide 
satisfactory solution to this need.  
  
To further test the general applicability of the method in collaboration with other 
researchers, a preliminary analysis of recorded spinal activity from lamprey was performed, 
of fMRI measurements of human brain activity and of DNA-microarrays measurements of 
gene-expression. Again, hidden manifolds with simple geometrical and topological features 
are discovered. These results give rise to some intriguing questions.  
 
Although can not be ruled out, it is unlikely that they are just accidental.  Assuming they 
are not, they can still be a consequence of some inherent artifact of the method itself. To 
test that this is not the case we applied the method to analyze the activity of simulated 
networks whose structure of synaptic connectivity and the nature of neurons (e.g. inhibitory 
vs. excitatory), are controlled [19,20]. The method can identify for example the inhibitory 
neurons and the existence of sub-networks when the network is composed of overlapping 
ones. The efficiency of the method was also tested in comparison between modeled and 
real networks and found that it can identify additional self-regulation motives in the real 
ones.  
 
Clearly, additional detailed tests of the method on a variety of systems are needed, but let 
assume that the discovered hidden causal manifolds are real rather than accidental or 
arbitrary. The most fundamental question then is why it is so effective. It is proposed that 
the reason is that the analysis is consistent with the manner in which the biological 
networks regulate their complex activity. In ref [21] it was shown that even for cultured 
neural networks the activity is self-regulated to operate at maximal complexity.   
Higher complexity is proposed to afford the network with elevated plasticity to perform a 
wide spectrum of tasks [4,21,22,23].  Motivated by the above it is proposed that the 
holographic principle for the self- regulation of the networks complex activity. The basic 
assumptions are: 1. that the networks activity is performed and regulated in the space of 
functional correlation. For neural networks it implies that the information is processed 
(encoded decoded and computed) in functional correlations rather than in rates or timing. 2. 
These high dimension space is regulated by hierarchically organized low dimension 
manifolds with simple geometry and topology.  The hierarchical organization is according 
to the holographic zooming described earlier. 3. The different modes of behavior and the 
activity of different sub-networks are mutually regulated by the holographic superposition 
which keeps entangled yet perpendicular manifolds. 4. Holographic creativity and a 
continuous space of manifolds. Using a discrete set of photographic films it is possible to 
generate a continuous spectrum of holograms that are constructed by different 
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combinations of the photographic films with continuous adjustment of the relative 
illumination. In an analogous manner the biological networks can create new modes of 
behaviors from a discrete set of fundamental sub-networks each with its own manifold. 
 
Biological networks do not have photographic films to store holograms nor do they have 
illuminating lights to for imprinting and regeneration. Hence one can doubt the possible 
reality of the above holographic principle beyond being just an intellectual metaphor. 
Indeed, as will be explained in detail, for the principle to be relevant to biological networks 
the activity must be regulated by at least two complementary mechanisms like the glia 
regulation in neural networks [24,25,26]. Simply phrased, neuro-glia fabrics provide the 
‘photographic films’ for the holograms which can be imprinted and retrieved by calcium 
and other chemical waves regulated by the glia cells when act as excitable media. 
 
If correct, the holographic schemata provide the brain with an entirely new ways of coding 
decoding and processing of information. For example, to sustain associative memory what 
is needed is the equivalent of superposition of two small portions of the photographic films 
of each memory.  The most attractive is that the holographic schemata provides in principle 
simple solutions to the fundamental question of creation new images or new meanings of 
texts. These can be sustaining by the holographic superposition and holographic creativity. 
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Appendix A. The dynamical soma and synapse model 
 
Computer modeling can serve as an equally powerful research tool in the studies of biotic 
systems [28,29], provided it is utilized and analyzed in proper manners adopted to the 
special autonomous (regulating) nature of these systems. Guided by the above realization, 
we have developed a new model in which both the neurons and the synapses connecting 
them are described as dynamical elements [19]. To model the neurons, we have adopted the 
Morris-Lecar [30] (M-L) dynamical description. The reasons for this choice are several: (1) 
in the M-L element, memory can be related to the dynamics of potassium channels; (2) it 
has been shown by Abbott and Kepler [31] that the M-L equations can be viewed as a 
reduction (to two variables) of the Hodgkin-Huxley model; (3) The M-L dynamical system 
has a special phase-space, which can lead to a generation of scale-free temporal behavior in 
neuronal firing, when fed with a simple noise current. 
 
The simple version of Morris-Lecar model reads: 
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with Iion(V,W) representing the contribution of the internal ionic Ca2+, K+ and leakage 
currents, with their corresponding channel conductivities gCa, gK and gL being constant 
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The additional current Iext represents all the external current sources stimulating the neuron, 
such as signals received through its synapses, glia-derived currents, artificial stimulations 
as well as any noise sources. In the absence of any such stimulation, the fraction of open 
potassium channels, W(V), relaxes towards its limiting curve W� (V), which is described 
by the sigmoid function. The limiting dynamics of calcium channels are described by 
m� (V). 
 
In our numerical simulations, we have used the following values: gCa=1.1mS/cm2, 
gK=2.0mS/cm2, gL=0.5mS/cm2, VCa=100mV, VK=-70mV, VL=-35mV, V1=-1mV, 
V2=15mV, V3=10mV, V4=14.5mV, � =0.3.  With such a choice of parameters, Ic=0. 
 
According to the theory of neuronal group selection, the size of brains' basic functional 
assembly varies between 50 and 104 cells. Motivated by this, and by the notion of unitary 
networks (as explained in text), we study the dynamics of networks composed of 20-60 
cells. To follow physiological data [32], 20% of the cells are usually set inhibitory. 
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The neurons in the model network exchange action potentials via the multi-state dynamic 
synapses, as described by Tsodyks et.al. [33]. In this model, the effective synaptic strength 
evolves according to the following equations:  
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Here, x, y, and z are the fractions of synaptic resources in the recovered, active and inactive 
states, respectively. The time-series tsp denote the arrival times of pre-synaptic spikes, �in is 
the characteristic time of post-synaptic currents (PSCs) decay, and �rec is the recovery time 
from synaptic depression. 
 
The variable u describes the effective use of synaptic resources by the incoming spike. For 
facilitating synapses, it obeys the following dynamic equation: 
 

0 (1 ) ( )sp
facil

u
u U u t t�

�
� � � � ��  

 
Where the parameter U0 determines the increase in the value of u with each spike. If no 
spikes arrive, the facilitation parameter decays to its baseline value with the time constant 
�facil. For the depressing synapses (as is the case when post-synaptic neuron is excitatory) 
one has �facil => 0, and u => U0 for each spike. 
 
The effective synaptic current of a neuron i is obtained by summing all of its j synaptic 
currents: 
 

( )i
syn j j
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Where the parameter Aj is the maximal value of synaptic strength. 
 
The values of parameters control the ability of system to exhibit modes of correlated 
activity. In our studies (unless indicated otherwise), we assigned to the network the 
parameters specified below, using the following notations: I indicates inhibitory neurons 
and E - excitatory ones. For example, �rec (E -> I) refers to the recovery time of a synapse 
transmitting input to an inhibitory neuron from excitatory one. Hence, we set: 
�rec(I=>I)=200ms, �rec(E=>I)=200ms, �rec(I=>E)=1200ms, �rec(E=>E)=1200ms, 
U0(I=>I)=0.5, U0(E=>I)=0.5, U0(I=>E)=0.08, U0(E=>E)=0.08, A(I=>I)=9, A(E=>I)=9, 
A(E=>E)=2.2, A(I=>E)=6.6. Actual values for each neuron were then generated as 
reported in [33]. We set �in=6 ms for all neurons. In addition, due to the small size of our 
simulated network, we chose �facil =2000 ms for all inhibitory neurons. 
 
To complete the picture, we need to provide a mechanism responsible for the generation of 
spontaneous activity in the isolated network. To simulate this, each neuron is subject to the 
fluctuating additional current 
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The fluctuating current may drive the neuron beyond the firing threshold, thus enabling it 
to generate spike and trigger the SBE. To keep a proper balance between the above current 
and inputs received from other neurons via the synaptic connections, the additional current 
Iad is limited to the range Ilow � Iad � Ihigh. The total current seen by a neuron at any time is a 
sum of Isyn(t) and Iad(t). 
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