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A functional holography (FH) approach is introduced for analyzing the complex activity of biological networks
in the space of functional correlations. Although the activity is often recorded from part of the nodes only, the
goal is to decipher the activity of the whole network. This is why the analysis is guided by the “whole in every
part” nature of a holograms—a small part of a hologram will generate the whole picture but with lower
resolution. The analysis is started by constructing the space of functional correlations from the similarities
between the activities of the network components using a special collective normalization or affinity transfor-
mation. Using dimension reduction algorithms like PCA, a connectivity diagram is generated in the 3-dimen-
sional space of the leading eigenvectors of the algorithm. The network components are positioned in the
3-dimensional space by projection on the eigenvectors and connect them with colored lines that represent the
similarities. Temporal (causal) information is superimposed by coloring the node’s locations according to the
temporal ordering of their activities. Utilizing the analysis, the existence of hidden manifolds with simple yet
characteristic geometrical and topological features in the complex biological activity was discovered from
cultured networks to the human brain. These findings could be a consequence of the analysis being consistent
with a new holographic principle by which biological networks regulate their complex activity. © 2005 Wiley
Periodicals, Inc. Complexity 10: 38 –51, 2005
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1. INTRODUCTION

T he activity of complex, multicomponent biological net-

works is often represented in terms of similarity matri-

ces and their corresponding connectivity diagrams. Exam-

ples range from metabolic pathways, through gene

expression, to recorded brain activity. In general, the matrix

element Si,j is the computed similarity between the activities

of components i and j. The similarity can be based on

different measures such as cross-correlations, coherences,

and mutual information, depending on the studied net-
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work. In the case of gene-expression measurements using

DNA-microarrays, the similarity is usually the intergene ex-

pression correlation [1], whereas in recorded brain activity

[e.g., electro-encephalogram (EEG), magneto-encephalo-

gram (MEG), and electrocorticography (ECoG)], it is the

interchannel coherences [2].

A common approach in the studies of similarity matrices

is to apply clustering algorithms to identify underlying sub-

groups (clusters) of components that have higher intersimi-

larities [3]. Many advanced algorithms have been devised

according to the specific systems and the assumed motifs

that are looked for. In the dendrogram clustering algorithm,

for example, the matrices are reordered to place together

components with higher similarities. In the principal com-

ponent algorithm (PCA) and its various variants, like SVD

and ICA, the components are projected on a low dimension

manifold whose axes are evaluated to capture most of the

relevant information in the similarity matrix. The clustering

algorithms are based on the implicit notion that the simi-

larity matrices represent a high dimension space of similar-

ities: N-dimension space for a network composed of N

components.

Often, the similarity matrices are also visualized by the

construction of their corresponding connectivity diagrams,

in which a line is drawn between each two component

whose similarity is above some threshold. Usually, the lines

colors or gray levels represent the level of the similarities.

For hard-wired networks (e.g., cultured neural networks),

the diagram is constructed according to the components

positions in the real network, by placing them on the dia-

gram according to the physical distances. Both for hard-

wired networks and distributed networks like gene-net-

works, the connectivity diagrams can be presented as

similarity circles in which the components are placed along

a circle and linked with lines that represent the similarities.

In many cases, one can also extract information about

the temporal ordering in the activity of the different com-

ponents, like phase coherences in recorded brain activity or

timing between neurons firing in cultured networks [4]. This

temporal information can be represented as a temporal

ordering matrix whose Ti,j describes the relative timing or

phase difference between the activities of components i

and j.

There has been rapid progress in the fields of data min-

ing and bioinformatics, with new and more advanced visu-

alization approaches and clustering algorithms being con-

tinuously developed [5]. Yet, many of the fundamental

issues related to the interpretations of the results or, more

specifically, the “reversed engineering” from the observed

activity to the underlying causes are still to be resolved. The

development our method has been motivated by the follow-

ing goals:

1. To relate the similarity in the activity of two compo-
nents to their functional dependence.

2. To relate the similarity between two components to the
similarity of each with all other components.

3. To compensate for the common limitation incurred by
measuring the activity of a fraction of the network com-
ponents only.

4. To reduce the effect of the inherent noise both in the
measurement procedure and in the biological activity
itself.

5. To identify underlying simple functional motives in the
observed complexity. This quest was motivated by the
assumption that such motives must exist if the biolog-
ical network is to be able to regulate its own complexity.

6. To connect the observed temporal ordering (activity
propagation) to underlying causal motives (information
propagation and causal connectivity).

7. To identify functional subgroups (functional clusters)
and to reveal the functional connectivity between these
subgroups.

8. To be able to compare the activity (similarity matrices)
of two different networks or different modes of behavior
of the same network.

The functional holography (FH) approach is a mathe-
matical concept of visualizing the network in an abstract
3-dimensional space of functional correlations calculated
from the similarity matrix. In other words, we construct a
dual network by placing the components in the abstract
space and linking them according to the similarities. The
mathematical procedure involves the following steps:

1. Evaluation of the similarity matrix Si,j between compo-
nent i and j.

2. Computation of the similarity distances Di,j—the Eu-
clidian distance between the position of components i
and j in the N-dimensional space of similarities.

3. Collective normalization of the similarities. The above
defined distances are used to normalize the similarities
and obtain functional correlations or affinities. That is,

Ai,j �
Ci,j

Di,j
. (1)

In other words, we transform the similarity matrix to a new
affinity matrix Ai,j.

4. Dimension reduction—projecting the N-dimensional
affinity space onto a 3-dimensional space that captures
the maximal information, using a standard clustering
algorithm like PCA (used here), SVD, or ICA. The axes of
the space are the three principal eigenvectors of the
PCA, and the components position is determined by the
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projection of the affinity matrix on these three eigen-
vectors.

5. Construction of a functional manifold—a connectivity
diagram in the 3-dimensional space generated by link-
ing the nodes (component positions) by the original
(non-normalized) similarities. In addition (optionally),
to capture also the topological properties of the mani-
fold, a curved surface is interpolated between the nodes.

6. Inclusion of temporal (causal) information—the activity
propagation on the manifold. When information is
available, the temporal ordering matrix is evaluated.
The relevant information can be added to the manifold
in two ways: (1) Adding arrows to the links between the
nodes according to Ti,j and (2) evaluating a collective
temporal ordering of all the nodes and marking their
relative timing by colors or gray levels.

7. Holographic comparison and superposition. The idea is
to compare the activity of two networks by projecting
the affinity matrix of one network on the PCA leading
vectors computed for the other, and vice versa. Two
modes of behaviors of the same network may be com-
pared the same way. By superposition, we refer to the
projection of each affinity matrix on the mutual PCA
leading vectors computed for the combined matrix.

8. Holographic zooming. If we want to magnify a part of
the manifold in order to capture more details, simple
re-scaling used to magnify a picture will not do. Instead,
it is necessary to perform a new iteration of the analysis,
starting with a subsimilarity matrix for the cluster of
components at the corresponding part of the manifold
to be magnified.

The stages (5)–(8) of this functional holography ap-
proach are generally applicable to the similarity matrices
directly, i.e., they do not depend on the proposed functional
normalization. The idea of holographic comparison is ex-
pected to be very efficient in many applications, like com-
paring gene-expression data from different populations of
organisms or groups of people.

In the next sections each of the above stages in the FH
method is illustrated and described in detail. The recorded
spontaneous activities of cultured neural networks are used
as a model system to illustrate the power of our new ap-
proach in providing a satisfying framework for achieving the
goals specified above.

Self-consistency tests of the method to demonstrate its
robustness under lesion (reduction in the number of re-
corded components) and noise tolerance are performed.
These tests are discussed in the last section with regard to
the rationale behind the functional holography analysis and
reasoning why it might provide clues about new self-regu-
lating schemata of biological networks.

Some preliminary results of analyzing ECoG recording of
human brain activity during seizure (Ictal) and between

seizure events (inter-Ictal) are presented. In the discussion,
it is proposed that the success of the method in capturing
the underlying functional and causal motives might imply
that the activity of neural networks is self regulated by an
underlying simple, low dimension manifolds in the space of
functional correlations.

2. EVALUATION OF SIMILARITY MATRICES FOR
CULTURED NETWORKS ACTIVITY
Cultured networks provide relatively simple and well-con-
trolled model systems for investigating long term (weeks),
individual neurons activity at different locations by using a
multielectrode array [6, 7]. The networks whose activity is
analyzed here are spontaneously formed from a dissociated
mixture of cortical neurons and glia cells from 1-day-old
Charles River rats. The cells are homogeneously spread over
a lithographically specified area of poly-D-lysine for attach-
ment to the recording electrodes. Consequently, the neu-
rons send dendrites and axons to form a wired network.
Although this process is self-executed with no externally
provided guiding stimulation or chemical cues, a relatively
intense dynamical activity is spontaneously generated
within several days. The spontaneous activity of cultured
networks is marked by the formation of synchronized burst-
ing events (SBEs), short (�200 ms) time windows, during
which most of the recorded neurons participate in relatively
rapid firing.. The SBEs are separated by long intervals
(above seconds) of sporadic neuronal firing. Each SBE can
be described as a matrix composed of N vectors, one for
each neuron. The vector Xi(t), represents the temporal ac-
tivity, or firing rate of neuron i, during the time window of
the SBE. See Ref. 8 for more details.

To evaluate the interneuron similarity matrix, the Pear-
son Correlation coefficient [9] is calculated between the
bursts of each pair of neurons according to the standard
definition:

Ci,j �
��Xi�t� � � i��Xj�t� � � j��

� i� j
, (2)

where Xi and Xj are the activities of neurons i and j with the
corresponding means �i and �j and sample standard devi-
ations (STD) �i and �j. The correlation coefficients for all
pairs of channels are computed, creating the correlation
matrix Ci,j. Note that, by definition, the correlation matrix is
symmetric (Ci,j � Cj,i) and its diagonal is 1 (Ci,i � 1). Next,
the similarity matrix is evaluated by averaging the interneu-
ron correlations over a sequence of SBEs. That is,

Si,j � �Ci,j�SBEs. (3)

A typical example of such an interneuron similarity matrix is
shown in Figure 1.
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To test the self-consistency of the above definition, we
evaluate a standard deviation matrix whose STDi,j element
is the standard deviation of Ci,j over the corresponding
sequence of SBEs. As can be seen in Figure 1, the deviation
is typically smaller than �0.4 and its average is �0.2. More-
over, using normality tests like the Lilliefors normality test,
[10] is obtained. For most pairs of neurons the correlations
are distributed normally.

3. THE AFFINITY TRANSFORMATION: COLLECTIVE
NORMALIZATION
The similarity matrix of N recorded neurons from a cultured
network describes an N-dimension space. The position of
neuron i in this space is set by the vector S�i—its similarities
Si,j with all other neurons j. Accordingly, the similarity dis-
tance Di,j, between neurons i and j, is simply the Euclidian
distance between their positions in the similarity space.
That is,1

Di,j � �S� i � S� j� � ��
m�1

N

�Si,m � Sj,m�2. (4)

As was mentioned in the Introduction, the similarity dis-
tances are used for collective or functional normalization of
the similarities. The reason the term “collective” is used has
to do with the fact that the similarity distance is a functional
of the differences between the similarities of the two neu-
rons with the other neurons. The distance is larger if they
have different similarities, and vice versa.

The functional normalization, or affinity transformation,
is the evaluation of the new affinity or functional correlation
matrix defined as follows:

Ai,j � � Si,j

Di,j

i � j

A0 i � j.
(5)

Formally, Di,i � 0 and hence the diagonal elements Ai,i are
ill-defined. However, because of the inherent neuronal plas-
ticity and to noise, there should be uncertainty in the auto-
correlation and therefore in the neurons positions in the
similarity space. The latter can be translated into position
uncertainty and thus into finite Ai,i, which is related to the
effective noise level and neuronal plasticity, and thus has to
be properly adjusted to the noise level as will be detailed
elsewhere. Here, for simplicity, A0 � 1/C0, where C0 is taken
as the estimated noise level in the neuron correlations.

Since the similarity distances represent a collective prop-
erty of all channels, the above procedure can help to cap-
ture hidden collective motifs related to functional connec-
tivity in the network behaviors.

4. DIMENSION REDUCTION
In the previous section it was mentioned that the similarity
matrix can be associated with an N-dimension space in
which the neuron i is positioned according to its vector S�i..
Similarly, the affinity matrix is also associated with an N-
dimension space of functional correlations. Correspond-
ingly, the position of neuron i in this space is set by a vector
A� i—the vector of affinities of this neuron with all other
neurons. The analysis is, guided by the assumption that
most of the relevant information can be obtained in a low
dimension space embedded in the larger one. To test this
hypothesis, we evaluate the PCA eigenvalues of an affinity
matrix that has been evaluated for the observed activity of a
cultured network. The PCA provides a method for identify-
ing new N directions in the N-dimensional space that are
ranked (ordered by their eigenvalues) according to the level
of standard deviations in the neuron positions [10]. The
spectrum shown in Figure 2 indicates that most of the

1Note that in Ref. 4, in the definition of the distances D(i, j)
there is division by �N; both definition are equivalent.

FIGURE 1

Left: A typical example of interneuron similarity matrix. Right: The corresponding standard deviation matrix computed as explained in the text. Notice that
all STD values are lower than �0.4 and the average is �0.2.
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information in the N-dimensional space of the functional
correlations can be captured after dimension reduction to a
3-D space whose axes are the three leading PCA eigenvec-
tors. The position of neuron i in this reduced space (Xi, Yi,
Zi) is set by the projection of A� i on the first three PCA
eigenvectors (Fig. 3).

5. FROM CLUSTERS TO MANIFOLDS
Projection of the matrix elements on a low dimensional
space (usually 1, 2, or 3), is common in dimension reduc-
tion using clustering algorithms. Because the motivation
is to look for subgroups or clusters in the collection of
components, identification of the clusters is the end re-
sult. Guided by the assumption that there are underlying
functional manifolds, (stage 5 of our method), the neuron
positions are next linked by the “naked” (un-normalized)

similarities above some threshold, as shown in Figure 5.
The idea is to add information about inter- and intra-
clusters, information that is lost by the projection of the
original matrix on its corresponding low dimensional
space. The result is a functional connectivity diagram in
the abstract space of leading PCA eigenvectors. The term
functional is used to emphasize that the diagram includes
information about the functional correlations, which de-
termines their position in the diagram. This is to be
distinguished from the ordinary connectivity diagrams in
which the neurons are positioned according to their
physical locations in the network. Interestingly, the
strong links (higher levels of similarities) form a bundle
with simple geometrical organization and simple yet
characteristic topology. The results demonstrate that by
bringing back some of the information lost in the dimen-
sion reduction we find additional features beyond clus-
tering. Keeping in mind that the recorded neurons are
just a small sample of the neurons in the network, we
suggest interpolating between the neuron positions ac-
cording to the similarity links to extract the underlying
backbone or the functional manifold of the diagram. It is
important to stress that the affinity transformation (the
functional normalization) is essential for capturing the
hidden manifold—a similar connectivity diagram con-
structed directly in the 3-D PCA space of the similarity
does not show such underlying manifold (Fig. 4).

The topology of the manifold of network (II) is that of
three perpendicular horseshoes such that the middle one
has a joint segment with each of the other two. It is also
topologically equivalent to a one turn helix but with a cur-
vature that is not uniform, i.e., it is higher at three specific
locations that correspond to the locations of the clusters. It
is emphasized that functional manifolds with the same to-
pology, which is simple yet of very specific characteristics,

FIGURE 2

The PCA eigenvalues of an affinity matrix for cultured neural network
activity whose similarity matrix is shown in Figure 1. We will refer to
this network activity as (I) in the next figures. In this network the
number of recorded neurons is N � 33. The eigenvalues are for the
PCA eigenvectors that are ordered according to the values.

FIGURE 3

Dimension reduction-projection of the neurons on the 3-D space of the PCA leading eigenvectors of network (I). Left: the projection for the affinity
matrix. Right: the projection for the similarity matrix. Comparison of the two figures illustrates the effect of our functional normalization. The
projection of the affinity matrix yields a more organized structure. The organization is more pronounced when the neurons are linked by their
similarities as is shown in Figure 4.
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can be identified also in recorded in vivo activity, including
from the human brain.

6. FROM MANIFOLDS TO CAUSAL MANIFOLDS
As was mentioned in the introduction, the similarity ma-
trices do not include essential information about the
networks behavior: the temporal propagation of the ac-
tivity relative timing between the components. This ad-
ditional information (when available) is usually presented
in temporal ordering matrices whose Ti,j element de-
scribes the relative timing or phase difference between
the activity of components i and j. There are various
methods to evaluate the temporal ordering matrices. In
studies of ECoG recorded brain activity, usually it is cal-
culated in terms of “phase coherences”—the relative
imaginary parts of the Fourier transform of the activity of
channels i and j.

Recently, a new notion—the “temporal center of mass,”
or temporal location of each neuron in the SBE time win-
dow—was proposed [4]. The idea is to regard the activity
density of each neuron i as a temporal weight function so
that its temporal center of mass, Ti

n, during a SBE (n) is
given by

Ti
n �

� �t � Tn�Di
n�t � Tn�dt

� Di
n�t � Tn�dt

, (6)

where the integral is over the time window of the SBE, and
Tn marks the temporal location of the nth SBE, which is the
combined “center of mass” of all the neurons As shown in
Figure 6, the temporal center of mass of each neuron can
vary between the different SBEs. Therefore we define the
relative timing of a neuron i to be Ti 	 �Ti

n�n—the average of
the sequence of SBEs. Similarly, we define the temporal
ordering matrix as follows:

Ti,j � �Ti
n � Tj

n�. (7)

Looking at the activity propagation in real space (Figure 6),
it can be seen that it starts in the center of the network near
electrodes (11, 19 ,27) and propagates in time in two direc-
tions— electrodes (3, 4) and (36, 37) to terminate on two
opposite sides near electrodes 14 and 15. Interestingly,
when the temporal information is superimposed on the

FIGURE 4

Functional manifolds in the 3-D space of leading PCA eigenvectors. The diagrams at the top show two angles of view of the manifold for network
(I) shown in Figure 3. By linking the nodes with similarities (above 0.5) new motifs are revealed, as explained in the text. The most pronounced one
is the identification of a quasi 1-D manifold with a specific yet simple topology, as shown in the bottom right figure. The manifold at the bottom
left illustrates that this motif is unlikely to be a coincidence as it is exhibited by other networks. The black line is the extracted quasi 1-D manifold
(backbone), as explained in the text.
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neurons in the 3-D space of leading PCA eigenvectors, the
activity propagates along the manifold in an orderly fashion
from one end to the other (Figure 6). For this reason, it is
proposed to view the resulted manifold, which includes the
temporal information as a causal manifold.2

7. HOLOGRAPHIC COMPARISON AND SUPERPOSITION OF
NETWORKS ACTIVITY
Often, clustering algorithms are used for comparison be-
tween the activities of different networks, e.g., gene-expres-
sion in two groups (positive and negative) of patients, or
between two modes of behavior of the same network, e.g.,
during and between epileptic seizures of the same patient.

The following holographic comparison between net-
works is proposed: (1) Compute the PCA leading eigenvec-
tors of the affinity matrix for each network. (2) Project the
affinity matrix of each network on the leading eigenvectors
of the other one. This approach can also be used for com-
parison between different modes of activity of the same
networks, like the above-mentioned case of brain activity in
between and during seizure. The holographic comparison
can also be used to compare different clusters identified in
a given matrix. Once the clusters are identified, the similar-
ity matrix for each is isolated from the combined matrix and
the above two stages are applied.

The holographic superposition is designed as another
method for comparison between different modes of activity
of the same network. The idea is similar to the holographic
comparison, only the projection is on the mutual PCA lead-
ing eigenvectors. That is, the leading eigenvectors of a com-

2In some cases, the functional connectivity diagrams are
more complex, and additional visual perception about the
causal features of the activity is obtained by interpolation of
a curved surface between the neuron positions, as described
in Ref. 4. Doing so resulted in a 2-D causal manifold in which
the activity propagates mostly along the edges.

FIGURE 5

Inclusion of the temporal information. Top Left: illustration of the
activity propagation in the physical space of the networks. At each
neuron position, we mark by gray level the values of its corresponding
Ti

n for all the SBEs in the sequence. Top right: illustration of the neuron
timing Ti superimposed on the functional connectivity diagram in the
3-D space of leading PCA eigenvectors. The timing is marked by the
gray level at the neuron position. Bottom Right: a schematic illustra-
tion of the notion about the activity propagation along the quasi 1-D
manifold. Bottom Left: an additional example of real network (the one
shown in the bottom left picture in Figure 5), with arrows that indicate
the temporal ordering added to emphasize the directionality. As one
can see, there is clear correspondence between the shape of the
manifold, the connectivity of the neurons, and the propagation of the
signal. Bottom: more examples of networks that exhibit causality in
the affinity manifold.

FIGURE 6

Holographic superposition. Large cultured networks exhibit distinct
modes of dynamical behavior. This phenomenon is manifested by the
observation that the sequence of SBEs is composed of distinct
subgroups of SBEs, each with its own characteristic spatiotemporal
pattern of activity and interneuron similarity matrix [4, 8].Top: two
manifolds, each for a specific mode of the network activity—a
specific subgroup of SBEs. For clarity, we present the manifolds by the
2-D interpolating surfaces. Bottom: the holographic superposition of
these two subgroups of SBEs. As described in the text, the similarity
matrix for each subgroup is projected on a joint 3-D PCA space. That
is a space whose axes are the leading PCA vectors of the combined
affinity matrix. As seen, each subgroup generates its own manifold
(each has a different gray level). For clarification, for each case we
used the 2-D manifold (extrapolation of a curved surface between the
nodes). It is also quite transparent that the manifold is intermingled
yet perpendicular. We emphasize that each manifold is composed of
all the recorded neurons. The holographic superposition makes it
possible to enhance the fact that each neuron has different similarities
for each subgroup of SBEs. The results shown are for the network
analyzed in Refs. 4 and 8.
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bined matrix that includes the different modes. In Figure 7
an example of holographic superposition is shown for cul-
tured networks whose activity is composed of distinct sub-
groups of SBEs (distinct modes of activity).

8. HOLOGRAPHIC ZOOMING
Often, one is interested in more details about a part of the
manifold. Such “zooming in” can be performed but not
simply by re-scaling of the axes as done, for example, when
a part of a picture is magnified. The idea of the holographic
zooming is to take advantage of the collective normalization
in the following way: (1) Identify the part of the manifold to
be magnified, i.e., identify the cluster of relevant compo-
nent; (2) Isolate the subsimilarity matrix for the cluster; and
(3) Perform a second iteration on this matrix, i.e., the affinity
transformation, dimension reduction, and construction of a
manifold. The latter is the magnified part of the manifold.

As explained in the discussion, the holographic zooming
is directly connected to the question about the proper di-
mension reduction—the proper number of leading PCA eig-
envectors to be examined.

9. SELF-CONSISTENCY TESTS OF THE NEW APPROACH
In the Introduction, eight goals were specified that moti-
vated the development of the functional holography ap-
proach. The collective normalization fulfils the first two
requirements. Stages (6)–(8) in the analysis is designed to
provide a satisfactory platform for requirements (6)–(8), re-
spectively, as explained and demonstrated in sections (6)–
(8).

The affinity transformation affords functional holog-
raphy unique robustness under lesion. This is a crucial
self-consistency test of the method. In most cases, the

networks activity is captured by measurements from a

number of components that is much smaller than the

total number of components in the network. For example,

the activity of the cultured neural network is represented

by recording from a few tens of neurons out of thousands

neurons in the network. The ECoG recorded brain activity

is extracted from 64 or 128 locations on the surface of the

brain.

To check the method’s lesion robustness, self-consis-

tency tests such as the one shown in Figure 8 were per-

formed. Starting with network i that has 33 recorded neu-

rons; several neurons from the recorded data were

randomly removed. As can be seen, even after lesion of 45%

of the neurons, both the characteristic topological and

causal features of the manifold are retained.

The second feasibility test has to do with the analysis

tolerance to noise. As mentioned in the Introduction, the

recorded data include noise from different processes, such

as inherent biotic noise in the systems, uncontrolled exter-

nal processes and in the measurement devices. Part of the

motivation to use collective normalization was that it can

help reduce the effect of noise. Let’s consider two neurons

with low functional dependence. The activity of such neu-

rons should have low similarity. In addition, the similarities

of each with the other neurons should be very different.

Hence they should be positioned far apart in the similarity

space (large similarity distance). In the presence of noise,

however, it is possible that superficial higher similarity will

be detected between them. But, it is very unlikely that noise

will have exactly the same effect on the similarities of each

of these neurons with all the others so that their similarity

distance is reduced. This is why it was expected that nor-

malization by distances would reduce the effect of noise.

FIGURE 7

Self-consistency test of lesion robustness. As described in the text, we remove at random several neurons from the recorded information and perform the
analysis as if the recorded number of neurons were smaller to begin with. Left: the results of removing 15 neurons out of the original 33. Comparison with
Figure 6 reveals that both the characteristic topological features of the manifold and the causal information are retained. It is also important to demonstrate
that when large enough fractions of the neurons are removed, the characteristic features eventually washed out. This is demonstrated in the picture on
the right, in which 20 neurons were removed. Although the feature of half crescent causal structure is retained, other features begin to wash out.
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Two tests were performed. The first is of tolerance to the
inherent biological noise. In the case of cultured networks,
it is expected to be manifested in small temporal variations
in the exact times of the individual neuronal spikes. To
check the effect of such inherent temporal biological uncer-
tainties, the noise was imitated by shifting each of the
recorded spikes about its temporal location by a small
amount picked from a normal distribution. In Figure 9 the
analysis the analysis is shown to have a very high tolerance
to the inherent biological noise.

The method’s tolerance to external noise was tested. For
that, noise was added directly to the similarity matrix. To
estimate what level of noise to add, we plot the histogram of
the similarities and take a noise level which is 10% of the
averaged similarity. As shown in Figure 9, for such a high
level the resulted manifold still retains the characteristic
topological and temporal features of the manifold in the
absence of additional noise.

The affinity manifold is not only robust to temporal noise
but also to correlations noise. In Figure 8 (bottom) the

stability of the manifolds when adding random noise to the
correlation matrix is demonstrated. As one can see, distort-
ing the correlation matrix by changing each value Ci,j by
adding a random number drawn from a Gaussian distribu-
tion do not distort the manifold for standard deviations
smaller then 0.1.

10. TESTING THE METHOD ON RECORDED HUMAN
BRAIN ACTIVITY
In the above sections, we presented examples of manifolds
computed for the recorded activity of cultured neural net-
works. Despite the artificial nature of these networks, the
manifolds exhibit simple yet characteristic geometrical and
topological features. In an attempt to rule out that these are
mere artifacts generated by the method, the recorded activ-
ities of chemically stressed networks were analyzed. The
results published in Ref. 4 are reassuring: the generated
manifolds lost the simple characteristic features of the nor-
mal activity. In another, more direct test, a network was
dissected into two active networks, revealing that the man-

FIGURE 8

Testing tolerance to noise. Top: manifolds illustrating the effect of biological-like noise—shifting the spikes by time intervals taken from a normal distribution
with standard deviation � � 10 ms (left) and � � 30 ms (right). Comparison of the manifold in the absence of noise (Figure 6) with the top left one shows
that both the topological features and the causal information of the manifold are retained at this high level of noise: the SBE time window is about 100
ms and the average interspike interval is about 10 ms. The top right manifold indicates that for sufficiently high level of noise—when � becomes comparable
with the time width of the SBE—the characteristic features of the manifold are washed out. In the bottom pictures we show the effect of noise that imitates
the effect of external noise sources. In this case, noise was added directly to the similarity matrix. The picture on the left is for noise level that is 10% of
the averaged similarity. Looking at the shape of the histogram of the similarities, it seems that this level of noise is also comparable with the background
noise. As is seen in the left bottom manifold, for this noise level the characteristic features of the manifold are retained. The manifold on the bottom right
is when very high noise is added to the correlation matrix so it is almost random. The outcome is an almost random connectivity diagram in the 3-D space.
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ifold in the affinity space also split into two. An even more

convincing feasibility test of the new method described here

involves analysis of recorded human brain activity from

epileptic patients who are candidates for brain surgery. The

method can also be applied to experimental seizure studies

that are gained much attention [11].

The occurrence of epilepsy is rising and is estimated to

affect, at some level, 1–2% of the world population [12].

Because of the availability of many anti-epileptic drugs,

approximately 80% of all epileptic patients can be kept

seizure-free. But for the remaining 20%, the only cure is

surgical resection of the seizure focus [13, 14]. One of the

most challenging tasks facing epileptologists is precise iden-

tification of brain areas to be removed so that the problem

can be cured with minimal damage and side effects. Often,

the precise location of the epileptogenic region remains

uncertain after obtaining conventional, noninvasive mea-

surements such as EEG and MEG can not provide sufficient

information because of the relatively low spatial resolution

of these methods. In these cases, the activity is directly

recorded by the ECoG procedure in which the recording

electrodes are placed directly on the brain surface as is

shown in Figure 10. The common approach to analyze the

ECoG recording is by evaluation of the coherences between

each pairs of electrodes. These coherences (the similarities

for this case) are the overlap of the Fourier transform of the

recorded voltage. Next a connectivity diagrams are con-

structed and the similarity matrices are analyzed using clus-

tering algorithm as is illustrated in Figure 10. The idea is to

compare the resulted connectivity diagrams (or the similar-

ity matrices), during epileptic seizure (Ictal) and between

episodes (inter-Ictal) to learn more about the cause of the

epilepsy. At present, the functional interpretation of these

advanced methods is still not clear especially since the

outcome matrices and connectivity diagrams appear more

complex than the raw data. Hence, much effort is devoted to

improve these methods and to the search for new ones.

In view of the above, the idea that functional holography

can reveal the existence of hidden causal manifolds embed-

ded within the complexity of the recorded brain activity was

tested, and if so, whether it can also provide an efficient tool

to distinguish between the inter-Ictal and the Ictal activities.

Typical results are presented in Figure 10. The first four

pictures show the manifolds for the similarity matrices in

Figure 10. The manifold of the inter-Ictal activity has a very

simple topology of almost circular horseshoe like part and

another bar perpendicular to its plane and position at the

center of the horseshoe. During Ictal the quasi 1-D property

of the manifold gives way to a quasi 2-D topology on the

surface of a sphere. Albeit the new manifold has more

complex topology as could be expected, it retains some of

the features of the inter-Ictal one when viewed from specific

angle. It hints that the holographic comparison described in

Section 7 might be an efficient method for comparison
between the inter-Ictal and Ictal activities as will be de-
scribed elsewhere.

The horseshoe topology seems to be common both to
the cultured networks and the brain activity. In the bottom
two pictures in Figure 11 another case (a different patient) is
shown in which the recording was from a larger area (a
different set of electrodes that covers a larger surface was
used). Usually, recording from a larger surface is needed
when it is harder to locate the seizure focus or there are
multiple foci. The manifold for the larger area recording is
composed of two perpendicular manifolds, each with a
horseshoe like topology. Using the holographic zooming on
one of them reveals that its topology is that of a two per-
pendicular “Siamese horseshoes” (one joint arm).

The examples above demonstrate the power of the new
method to identify hidden motifs in the complex brain
activity. Preliminary analyses also indicate that causal fea-
tures are captured when the temporal (i.e., phase coher-
ences) information is imposed on the manifolds. These
results bear the promise that functional holography might
become a valuable epileptogenic diagnostic procedure as
well as research approach.

11. CONCLUDING REMARKS
A new method for analyzing the complex activity of biolog-
ical networks is presented, guided by the notion of holo-
grams. In a holographic process, the information describing
a 3-D object is encoded on a 2-D photographic film, ready to
be regenerated into a holographic image or hologram. A
characteristic feature is the “whole in every part” nature of
the process: a small part of the photographic film can gen-
erate the whole picture, but with fewer details. Another
property is high tolerance to noise and high robustness to
lesion: even with many imperfections or with several pixels
removed, the image of the object as a whole is still retained
in the hologram. To magnify a part of the original 3-D
object, one needs to produce a new photographic film for
the part to be magnified. Another related feature is the
holographic superposition—when illuminated together,
(placed side by side) two holograms can generate a super-
position of the corresponding two 3-D objects. Superposi-
tion of objects can also be made by imprinting the images of
the two (or more) 3-D objects on the same holographic film.
These and other special features of hologram are due to the
way the information is encoded on the films—not a direct
projection of the picture in real space but in the correlations
between the pixels. These are converted back to a picture in
three dimensions by proper illumination.

The above properties of holograms guided the develop-
ment and are the rational behind the functional holography
method presented here. The term functional is to indicate
that the analysis is in the space of functional correlations
that serve the analogue role to the long-range correlations
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imprinted on the photographic film (by the use of the in-
terference of coherent lights). The methods shown here
share the special features of holograms—tolerance to noise,
robustness to lesion, holographic superposition, and holo-
graphic zooming.

As feasibility tests the method ability to capture hidden
motifs in complex activity was used to analyze two extreme
examples of neuronal networks: the spontaneous activity of
cultured neural networks and recorded human brain activ-
ity. In both cases the analyses revealed the existence of
hidden low dimension manifolds in the high dimension
space of functional correlations. The manifolds have sur-

prisingly simple yet characteristic geometrical topological
and causal features. Using holographic superposition differ-
ent modes of the network activity resulted in an entangled
manifold composed of a superposition of the individual
modes manifolds. Using holographic zooming on recorded
brain activity, we demonstrated how additional hierarchical
motifs can be revealed.

The results presented here aimed to demonstrate the
potential of the method as a new valuable procedure for
diagnosis of biological networks activity. Such diagnostic
procedures are needed for the interpretation of recorded
brain activity using EEG, MEG, ECoG, and fMRI [15]. For

FIGURE 9

Illustration of the common approach in analyzing ECoG recording of human brain activity. Top left: a set of electrodes placed on the surface of the brain
(the frontal lobe in this case). The two pictures in black and white show the voltage recorded from each electrode as function of time. The top one is for
inter-Ictal activity and the bottom one is for Ictal (during seizure). Middle: the connectivity diagram constructed according to the coherences: the color of
each link between two electrodes indicate the level of coherence (blue low and red high). The picture on the left is for inter-Ictal activity and the one on
the right is for Ictal. Bottom: the corresponding dendrogramed similarity matrices. Note that in this case the coherences are used as the measure of the
similarities. See Ref. 2 for more details.
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example, the purpose of ECoG is to localize a suspected
seizure focus in the cerebral cortex for patients who are
candidates for surgery. The decision of whether to re-
move or to leave a marginally active area of cortex intact
elicits a wide range of opinions from clinicians. Although
it is expensive and manpower intensive, ECoG remains
the cardinal method for determining the anatomic site of
seizure onset, yet even this method of direct recording is
not always conclusive. When the seizures involve the
medial temporal lobe or are associated with a demonstra-
ble neoplastic process, surgery is successful in about
60 –70% of cases. However, when the seizures are sugges-
tive of extra-temporal foci, or no lesion can be identified
by MRI and fMRI, the success rate of surgical interven-

tions drops precipitously to less than 50%. This poor cure
rate for extra-temporal seizure implies that the current
conceptualizations about the disorder are inadequate
[16 –18], and more accurate models of epileptic processes
and better diagnostic procedures are needed. As was
mentioned earlier, functional holography might provide
satisfactory solution to this need.

To further test the general applicability of the method,
preliminary analysis of recorded spinal activity from lam-
prey was performed, of fMRI measurements of human brain
activity and of DNA-microarrays measurements of gene-
expression. Again, hidden manifolds with simple geometri-
cal and topological features are discovered. These results
give rise to some intriguing questions.

FIGURE 10

Examples of causal manifolds for ECoG recorded human brain activity. The top four pictures are for the inter-Ictal and Ictal activities shown in Figure 10.
The ones on the left are for inter-Ictal and those on the right are for Ictal. For each case we show the manifold from to angles of view. The bottom pictures
show the holographic zooming for a different set of recordings from a different patient. The recordings in this case were from a larger area. The similarity
in this case was calculated by evaluation of the correlations between the voltage traces from each electrode. Note that the manifold shown on the left picture
is composed of two perpendicular horseshoes like manifolds. The picture on the right shows a holographic magnification of the left one. The magnification
reveals that this manifold is also composed of two perpendicular horseshoe but with a joint leg.

© 2005 Wiley Periodicals, Inc. C O M P L E X I T Y 49



Although can not be ruled out, it is unlikely that they are

just accidental. Assuming they are not, they can still be a

consequence of some inherent artifact of the method itself.

To test that this is not the case we applied the method to

analyze the activity of simulated networks whose structure

of synaptic connectivity and the nature of neurons (e.g.,

inhibitory vs. excitatory), are controlled [19, 20]. The

method can identify, for example, the inhibitory neurons

and the existence of subnetworks when the network is com-

posed of overlapping ones. The efficiency of the method

was also tested in comparison between modeled and real

networks and found that it can identify additional self-

regulation motives in the real ones.

Clearly, additional detailed tests of the method on a

variety of systems are needed, but let assume that the

discovered hidden causal manifolds are real rather than

accidental or arbitrary. The most fundamental question

then is why it is so effective. It is proposed that the reason

is that the analysis is consistent with the manner in which

the biological networks regulate their complex activity. In

Ref . 21 it was shown that even for cultured neural net-

works the activity is self-regulated to operate at maximal

complexity.

Higher complexity is proposed to afford the network

with elevated plasticity to perform a wide spectrum of tasks

[4, 21–23]. Motivated by the above it is proposed that the

holographic principle for the self-regulation of the networks

complex activity. The basic assumptions are as follows: (1)

that the networks activity is performed and regulated in the

space of functional correlation. For neural networks it im-

plies that the information is processed (encoded decoded

and computed) in functional correlations rather than in

rates or timing. (2) These high dimension space is regulated

by hierarchically organized low dimension manifolds with

simple geometry and topology. The hierarchical organiza-

tion is according to the holographic zooming described

earlier. (3) The different modes of behavior and the activity

of different subnetworks are mutually regulated by the ho-

lographic superposition which keeps entangled yet perpen-

dicular manifolds, and (4) holographic creativity and a con-

tinuous space of manifolds. Using a discrete set of

photographic films it is possible to generate a continuous

spectrum of holograms that are constructed by different

combinations of the photographic films with continuous

adjustment of the relative illumination. In an analogous

manner the biological networks can create new modes of

behaviors from a discrete set of fundamental subnetworks

each with its own manifold.

Biological networks do not have photographic films to
store holograms nor do they have illuminating lights to for
imprinting and regeneration. Hence one can doubt the pos-
sible reality of the above holographic principle beyond being
just an intellectual metaphor. Indeed, as will be explained in
detail, for the principle to be relevant to biological networks
the activity must be regulated by at least two complementary
mechanisms like the glia regulation in neural networks [24–
26]. Simply phrased, neuro-glia fabrics provide the “photo-
graphic films” for the holograms, which can be imprinted and
retrieved by calcium and other chemical waves regulated by
the glia cells when act as excitable media.

If correct, the holographic schemata provide the brain
with an entirely new ways of coding decoding and process-
ing of information. For example, to sustain associative
memory what is needed is the equivalent of superposition
of two small portions of the photographic films of each
memory. The most attractive is that the holographic sche-
mata provides in principle simple solutions to the funda-
mental question of creation new images or new meanings of
texts. These can be sustaining by the holographic superpo-
sition and holographic creativity.
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