[extropy-chat] diffraction limit

scerir scerir at libero.it
Sun May 30 16:28:31 UTC 2004


From: "Dan Clemmensen" 

> 1) Theoretically, there is no upper limit of the length for quantum 
> tunneling effects, but as a practical matter they are undetectable above 
> some upper bound.
> 2) There is an upper bound on the length at which quantum tunneling 
> becomes practically useful. 
> 3) There is a lower bound on the length at which quantum effects can be 
> practically ignored.
> 4) There is a lower bound on the length at which a classical model can 
> be used at all.
> (Can a real physicist please supply these dimensions?)

I think real physicists (I'm not!) could perhaps answer knowing 
details (like energies, barriers/potentials, materials, etc.).

Anyway, let me point out this paper (it seems a very good one)
http://www.intel.com/research/documents/Bourianoff-Proc-IEEE-Limits.pdf
 
> I really don't know where these bounds are. The existence of (4) makes 
> me very skeptical of nano-electronics.

I've read that in MPU applications the gate physical thickness
will reach 1 nm in 2006! Is it true? With such thickness, 
tunneling leakage current becomes relevant, unless they
introduce a higher dielectric constant material.

Regards,
s.






More information about the extropy-chat mailing list