[extropy-chat] diffraction limit
scerir
scerir at libero.it
Sun May 30 16:28:31 UTC 2004
From: "Dan Clemmensen"
> 1) Theoretically, there is no upper limit of the length for quantum
> tunneling effects, but as a practical matter they are undetectable above
> some upper bound.
> 2) There is an upper bound on the length at which quantum tunneling
> becomes practically useful.
> 3) There is a lower bound on the length at which quantum effects can be
> practically ignored.
> 4) There is a lower bound on the length at which a classical model can
> be used at all.
> (Can a real physicist please supply these dimensions?)
I think real physicists (I'm not!) could perhaps answer knowing
details (like energies, barriers/potentials, materials, etc.).
Anyway, let me point out this paper (it seems a very good one)
http://www.intel.com/research/documents/Bourianoff-Proc-IEEE-Limits.pdf
> I really don't know where these bounds are. The existence of (4) makes
> me very skeptical of nano-electronics.
I've read that in MPU applications the gate physical thickness
will reach 1 nm in 2006! Is it true? With such thickness,
tunneling leakage current becomes relevant, unless they
introduce a higher dielectric constant material.
Regards,
s.
More information about the extropy-chat
mailing list