[Paleopsych] Re: Commercial ISS and Lunar Resupply Options
HowlBloom at aol.com
HowlBloom at aol.com
Thu Nov 24 03:50:34 UTC 2005
The NASA report is extremely exciting. Congratulations on stimulating the
space agency to think commercial.
The report leaves out one tried and true component that could help achieve
its goals--the X-Prize. A series of X-Prize contests leading to low-earth
orbit, fuel depots in space, and eventually the moon and beyond may prove far
more effective in mobilizing talent than inviting bids.
The X-Prize competitors and sponsors have proven that a competition between
technologies forced to show their stuff is far more convincing, exciting,
and effective, than a battle between batches of paperwork.
Howard
NASA and the Business of Space
STATUS REPORT
Date Released: Friday, November 18, 2005
Source: _NASA HQ_ (http://www.nasa.gov/)
American Astronautical Society 52nd Annual Conference
Michael D. Griffin
NASA Administrator
15 November 2005
When President Bush announced the Vision for Space Exploration in January
2004, he made many specific points, including one which has been little noted,
but which we here all believe; that the pursuit of the Vision will enhance
America's economic, scientific and security interests. He also made it clear
that the first step in the plan was to use the Space Shuttle to complete the
assembly of the International Space Station (ISS), after which the ISS would be
used to further the goals of exploration beyond low Earth orbit. These
issues are all closely related, and I believe it is time to discuss in more
detail how the ISS will be used to accomplish them, and how it will fit into a
broader strategy for 21st century space exploration of the Moon, Mars and beyond
in a way that will spur commerce, advance scientific knowledge, and expand
humanity's horizons.
We are entering the dawn of the true space age. Our nation has the
opportunity to lead the way. It is an opportunity we are eager to pursue, and one
which we are unwilling to postpone. But the exploration of the solar system
cannot be what we want it to be as an enterprise borne solely by the American
taxpayer, or even by the taxpayers of the nations willing to join with us in
this enterprise.
If we are to make the expansion and development of the space frontier an
integral part of what it is that human societies do, then these activities must,
as quickly as possible, assume an economic dimension as well.
Government-directed space activity must become a lesser rather than a greater part of what
humans do in space. To this end, it is up to us at NASA to use the challenge
of the Vision for Space Exploration to foster the commercial opportunities
which are inherent to this exciting endeavor. Our strategy to implement the
Vision must, and we believe does, have the potential to open a genuine and
sustainable era of space commerce. And the International Space Station will
provide the first glimpses into this new era.
Before we pursue this thought further, let us summarize a few statistics
from the ISS program. On November 2nd, we marked the fifth year of consecutive
human occupancy of the Station. The Station has hosted 97 visitors from ten
countries in its approximately 425 cubic meters, a volume roughly the size of a
typical three-bedroom home. Of these, 29 have been crew members of the
twelve ISS expeditions which have flown to date. With the most recent spacewalk by
Expedition 12 Commander Bill McArthur and Flight Engineer Valery Tokarev, 63
have been conducted in support of ISS assembly, totaling nearly 380 hours.
And through the partnership we have with 15 other nations, we have learned to
work together on an incredibly complex systems engineering project. While it
certainly has not always gone smoothly, the simple fact of its accomplishment
has been an amazing feat. My oft-stated view is that the international
partnership is, in fact, the most important long-term benefit to be derived from
the ISS program. I think it is a harbinger of what we can accomplish in the
future as we move forward to even more ambitious objectives in space.
Indeed, the value of this international collaboration was endorsed once
again by a recent vote in Congress, which lessened certain restrictions placed on
our ability to cooperate with Russia in the arena of manned spaceflight.
This Congressional action helps to ensure the continuous presence of American
astronauts on the station. It continues to reflect our government's commitment
to nonproliferation objectives, while recognizing the value of international
cooperation in space exploration.
So, how can the ISS that we are building today help us to move beyond low
Earth orbit tomorrow?
To begin, we are focusing human research on ISS on the highest risks to crew
health and other issues we will face on long exploratory missions. This
research will help us understand the effects of long duration spaceflight on the
human body, such as bone and muscle loss, so that we can develop medical
standards and protocols to manage such risks. We have already had some successful
anecdotal experience among ISS crewmembers with exercise countermeasures.
Perhaps ISS-based research will one day help us to evaluate the efficacy of
drugs to counter osteoporosis, or long-term exposure to the radiation
environment, or to test advanced radiation detectors. The station will help us learn to
deal with crew stress on long missions, to enable them to remain emotionally
healthy.
With the ISS as a testbed, we can learn to develop the medical technologies,
including small and reliable medical sensors and new telemedicine
techniques, needed for missions far from home. A milestone in that arena was achieved a
year ago, when the journal Radiology published its first research paper
submitted directly from the Station, ISS Science Officer Mike Fincke's account of
the first use of ultrasound in space for a shoulder examination.
The ISS can host, and test, developmental versions of the new lox/methane
engines we will need for the Crew Exploration Vehicle (CEV), and many other
systems that we will need for Mars. These include the development and
verification of environmental control, life support, and monitoring technologies, air
revitalization, thermal control and multiphase flow technologies, and research
into flammability and fire safety. As I have often said, when we set out for
Mars, it will be like sealing a crew into a submarine and telling them not
to ask for help or return to port for several years. We can't do that today.
We have to be able to do it before people can go to Mars. We'll learn to do it
on the ISS, and later on the Moon. And so, fundamentally, the ISS will allow
us to learn to live and work in space.
And even though this research is focused on the tasks associated with
setting up research bases on the Moon and preparing the way for Mars exploration,
it will also benefit millions of people here on Earth. What we learn about
bone loss mitigation and cardiovascular deconditioning, the development of
remote monitoring and medical care, and water reclamation and environmental
characterization technology obviously has broader benefits. One certainly would not
build a space station to achieve these goals. But given that we have it, we
intend to maximize the science return from ISS in ways that will benefit both
space exploration and our society at large.
But now let us turn to what I believe will be an even greater benefit of the
ISS, and that is its role in the development of space as an economic arena.
In order that we may devote as much of NASA's budget as possible to the
cutting edge of space exploration, we must seek to reduce the cost of all things
routine. Here in 2005, the definition of "routine" certainly should include
robust, reliable, and cost effective access to space for at least small and
medium class payloads. Unfortunately, it does not, and frankly, this is not an
area where it is reasonable to expect government to excel. Within the
boundaries of available technology, when we want an activity to be performed
reliably and efficiently, we in our society look to the competitive pressures of the
free market to achieve these goals. In space, these pressures have been
notably lacking, in part because the space "market" has historically been both
specialized and small. There have been exceptions – notably in the
communications satellite market – but the key word here is "exceptions". Broadly
speaking, the market for space services has never enjoyed either the breadth or the
scale of competition which has led, for example, to today's highly efficient
air transportation services. Without a strong, identifiable market, the
competitive environment necessary to achieve the advantages we associate with the
free market simply cannot arise.
I believe that with the advent of the ISS, there will exist for the first
time a strong, identifiable market for "routine" transportation service to and
from LEO, and that this will be only the first step in what will be a huge
opportunity for truly commercial space enterprise, inherent to the Vision for
Space Exploration. I believe that the ISS provides a tremendous opportunity to
promote commercial space ventures that will help us meet our exploration
objectives and at the same time create new jobs and new industry.
The clearly identifiable market provided by the ISS is that for regular
cargo delivery and return, and crew rotation, especially after we retire the
shuttle in 2010, but earlier should the capability become available. We want to
be able to buy these services from American industry to the fullest extent
possible. We believe that when we engage the engine of competition, these
services will be provided in a more cost-effective fashion than when the government
has to do it. To that end, we have established a commercial crew/cargo
project office, and assigned to it the task of stimulating commercial enterprise
in space by asking American entrepreneurs to provide innovative, cost
effective commercial cargo and crew transportation services to the space station.
This fall, NASA will post a draft announcement which seeks proposals from
industry for flight demonstrations to the International Space Station of any
combination of the following: external unpressurized cargo delivery and
disposal, internal pressurized cargo delivery and disposal, internal pressurized
cargo delivery and recovery, and crew transport.
As these capabilities are demonstrated in the years ahead, we will solicit
proposals for ongoing ISS transportation services from commercial providers.
This announcement offers the opportunity for industry to develop capabilities
that, once proven, NASA will purchase with great regularity, just as we
regularly purchase launch services for our robotic spacecraft today. Once the
announcement is on the street, we will receive proposals by late January, with
the intent to execute agreements by May of next year.
This competition will be open to emerging and established companies, with
foreign content allowed, consistent with American law and policy. Proposals can
include any mix of existing or new designs and hardware. NASA does not have
a preferred solution. Our requirements will be couched, to the maximum extent
possible, in terms of performance objectives, not process. Process
requirements which remain will reflect matters of fundamental safety of life and
property, or other basic matters. It will not be government "business as usual".
If those of you in industry find it to be otherwise, I expect to hear from you
on the matter.
With this plan, and providing of course that we retain the support of the
Congress necessary to carry it out, we will put about a half-billion dollars in
play over the five years to promote competition that is good for the private
sector and good for the public interest. I'm confident that this kind of
financial incentive, on different terms than are usual with NASA, or indeed with
any government entity, will result in the emergence of substantial
commercial providers. Such successes will, in their turn, serve as a justification for
even greater use of such "non-traditional" acquisition methods. As I have
said in other venues, my use of the words "non-traditional" here is somewhat
tongue-in-cheek, because what we are talking about is completely traditional in
the bulk of our economy which is not driven by government procurement. In
this larger economy, when there exist customers with specific needs and the
financial resources to satisfy these needs, suppliers compete avidly to meet
them. We need more of this in the space enterprise.
But as stated earlier, this is only the first step. An explicit goal of our
exploration systems architecture was to provide an avenue for the creation of
a substantial space economy by suitably leveraging government investment to
meet its stated mission requirements. The architecture we announced in
September was designed so that NASA would provide, but would provide only, the
essential transportation elements and infrastructure to get beyond low Earth
orbit. The heavy lift launchers and crew vehicles necessary to journey beyond
LEO cannot, in anything like the near future, be provided by any entity other
than NASA, on behalf of the U.S. government. The analogy I have used elsewhere
is that NASA will build the "interstate highway" that will allow us to
return to the Moon, and to go to Mars.
We as a nation once had the systems to build this "interstate highway"
leading out into the solar system, we should have retained and evolved them, but
we did not. So we need to rebuild them. But the "highways" themselves are not,
and are not supposed to be, the interesting part. What is interesting are
the destinations and, particularly to the point of the present discussion, the
service stations, hotels, and other businesses and accommodations that we
will find at the "exit ramps" of our future "interstate highways" in space. It
is here that a robust commercial market can develop to support our exploration
goals, and eventually to go beyond them. I think we are at the start of
something big, somewhat akin to what we saw with the personal computer 25 years
ago.
To my point, NASA's exploration architecture does what it must. It fulfills
the mission required of it by the President, according to the terms of a
major speech and written policy. It does so in a fashion which some have labeled
as "boring" or "lacking pizzazz", but which others have observed makes
efficient use of the building blocks that we as a nation own today, and in which
the pieces "fit together like a fine Swiss watch". I believe these seemingly
divergent views are merely two sides are the same coin, reflecting the fact
that the plan delivers what it must, without including what it need not. Nothing
else is acceptable in these fiscally challenging times.
But the building blocks of our architecture could easily be used to
accomplish much more, with the right leverage from commercial providers. To see how
this is so, observe first that our "1.5 launch solution" separates the smaller
crew launch from that of the heavy, high- value cargo, both on
Shuttle-derived launch vehicle variants. While this approach allows us to meet lunar
return mission requirements with U.S. government systems – no external entities
are in the critical path for mission accomplishment – it does not exclude such
entities, and indeed provides several "hooks" and "scars" by which their
services can be used to facilitate or enhance the mission.
By the time we are ready to return to the Moon, the ISS will have been
completed and will be in receipt of routine commercial resupply and crew rotation
service for, we hope, several years. So, if the plan for stimulating the
development of ISS commercial crew rotation capability is successful, it becomes
possible to envision the crew launch phase of the lunar mission being carried
out on commercial systems. This would be a service we could purchase
commercially, leaving the very heavy lift requirements to the government system, for
which it is less likely that there will be other commercial applications
during this period.
Whether or not this occurs, other options are also possible. Astute
observers will note that the Shuttle-derived heavy lift vehicle (SDHLV) that we have
proposed is not, as a rocket, being optimally utilized for its lunar mission.
This is because some of the fuel in the so-called "Earth departure stage" is
used to lift the lunar payload into Earth orbit, but additional fuel must
yet be retained for the translunar ignition burn of over 3 km/s. From a purely
architectural point of view, the SDHLV is an expensive vehicle, most aptly
utilized for lifting only expensive cargo, such as the man-rated systems it
carries. But in our architecture, some of its lift capacity must be utilized to
carry fuel into low Earth orbit. This is unsatisfying, because when on the
ground, fuel is about the cheapest material employed in any aspect of the space
business. Its value in orbit (at least several thousand dollars per pound)
is almost completely a function of its location rather than intrinsic to its
nature. In contrast, the value of, say, the Lunar Surface Access Module (LSAM)
brought up on the heavy-lifter will be well over $100 K per pound, most of
which represents its intrinsic cost. The additional value it acquires when
transported to its new position in LEO remains a small part of the total value.
Logically, then, we should seek to use the SDHLV only for the highest-value
cargo, and specifically we should desire to place fuel in orbit by the
cheapest means possible, in whatever manner this can be accomplished, whether of
high reliability or not. However, in deciding to embark on a lunar mission, we
cannot afford the consequential damage of not having fuel available when
needed. Recognizing that fact, our mission architecture hauls its own Earth-
departure fuel up from the ground for each trip. But if there were a fuel depot
available on orbit, one capable of being replenished at any time, the Earth
departure stage could after refueling carry significantly more payload to the
Moon, maximizing the utility of the inherently expensive SDHLV for carrying
high-value cargo.
But NASA's architecture does not feature a fuel depot. Even if it could be
afforded within the budget constraints which we will likely face – and it
cannot – it is philosophically the wrong thing for the government to be doing. It
is not "necessary"; it is not on the critical path of things we "must do" to
return astronauts to the Moon. It is a highly valuable enhancement, but the
mission is not hostage to its availability. It is exactly the type of
enterprise which should be left to industry and to the marketplace.
So let us look forward ten or more years, to a time when we are closer to
resuming human exploration of the Moon. The value of such a commercially
operated fuel depot in low Earth orbit at that time is easy to estimate. Such a
depot would support at least two planned missions to the Moon each year. The
architecture which we have advanced places about 150 metric tons in LEO, 25 MT
on the Crew Launch Vehicle and 125 MT on the heavy-lifter. Of the total, about
half will be propellant in the form of liquid oxygen and hydrogen, required
for the translunar injection to the Moon. If the Earth departure stage could
be refueled on-orbit, the crew and all high-value hardware could be launched
using a single SDHLV, and all of this could be sent to the Moon.
There are several ways in which the value of this extra capability might be
calculated, but at a conservatively low government price of $10,000/kg for
payload in LEO, 250 MT of fuel for two missions per year is worth $2.5 B, at
government rates. If a commercial provider can supply fuel at a lower cost,
both the government and the contractor will benefit. This is a non-trivial
market, and it will only grow as we continue to fly. The value of fuel for a
single Mars mission may be several billion dollars by itself. Once industry
becomes fully convinced that the United States, in company with its international
partners, is headed out into the solar system for good, I believe that the
economics of such a business will attract multiple competitors, to the benefit
of both stockholders and taxpayers.
Best of all, such an approach enables us to leverage the value of the
government system without putting commercial fuel deliveries in the critical path.
If the depot is there and is full, we can use it. But with the architecture
we have advanced, we can conduct missions to the Moon without it. The
government does not need to have oversight, or even insight, into the quality and
reliability of the fuel delivery service. If fuel is not delivered, the loss
belongs to the operator, not to the government. If fuel is delivered and
maintained in storage, the contractors are paid, whether or not the government flies
its intended missions. If long-term delivery contracts are negotiated, and
the provider learns to effect deliveries more efficiently, the gain is his,
not the government's. Since fuel is completely fungible, it can be left to the
provider to determine the optimum origin, size and method of a delivering it.
And finally, though I would rather not do it, it is even possible that we
could develop such a market in stages, with the first fuel tank provided by the
government, and then turned over to a commercial provider to store and
maintain fuel for future missions, and to expand the tank farm as warranted by the
market.
To maintain and operate the fuel depot, periodic human support may be
needed. Living space in Earth orbit may be required; if so, this presents yet
another commercial opportunity for people like Bob Bigelow, who is already working
on developing space habitats. So the logistics needs of the fuel depot may
provide more of the same opportunities that we will pioneer with ISS.
Fuel and other consumables will not always be most needed where they are
stored. Will orbital transfer and delivery services develop, with reusable
"space tugs" ferrying goods from centralized stockpiles to other locations?
The fuel depot operator will need power for refrigeration and other support
systems. This might well be left to specialty suppliers who know nothing of
the storage and maintenance of cryogenic tank farms, but who know a lot about
how to generate and store power. Could these be standard power modules,
developed and delivered for a fee to locations specified by the user?
In the course of conducting many fuel replenishment missions and associated
operations, commercial launch and orbital systems of known and presumably
high reliability will be developed and evolved. Government mission planners will
be able to take advantage of these systems, which will become "known
quantities" by virtue of their track record rather than through the at best mixed
blessings of government development oversight.
There will also be a private sector role in supporting a variety of lunar
surface systems and infrastructure, including lunar habitats, power and science
facilities, surface rovers, logistics and resupply, communications and
navigation, and in situ resource utilization equipment. There may or may not be
gold on the Moon – I'm not sure we care – but we may well witness a 21st
century gold rush of sorts when entrepreneurs learn to roast oxygen from the lunar
soil, saving a major portion of the cost of bringing fuel to the lunar
surface. Will a time come when it is more economical to ship liquid oxygen from
the lunar surface to low Earth orbit, then to bring it up from Earth?
This will all start to become "really real" in 10 years or so. As I see it,
these are exactly the kinds of enterprises to which government is poorly
suited, but which in the hands of the right entrepreneur can earn that person a
cover on Fortune magazine. But it will take enlightened government management
to bring it about, management as much in the form of what not to do, as to
do. In the coming years and decades, NASA must focus on its core government
role as a provider of infrastructure broadly applicable to the common good, and
too expensive for any single business entity to develop. NASA must remain on
the frontier, and must conscientiously architect its plans to favor the
inclusion of entrepreneurs through arms-length transactions wherever possible,
restricting the use of classic "prime contracts" to situations where they are
the right tool, not the default tool.
With the beginning of space station operations five years ago, we are now at
a point children born at the beginning of the 21st century will live their
lives knowing that there will always be people living and working in space.
And the number of people who will be engaged in such activity will grow by
leaps and bounds if we in government are faithful in executing our role in
helping the private sector to step up to these new opportunities. I hope there are
many entrepreneurs in this audience who have the vision to help us help them
pioneer the commercial space frontier. You, and all those engaged in the
quest that we are undertaking, have my sincere thanks and appreciation.
----------
Howard Bloom
Author of The Lucifer Principle: A Scientific Expedition Into the Forces of
History and Global Brain: The Evolution of Mass Mind From The Big Bang to the
21st Century
Recent Visiting Scholar-Graduate Psychology Department, New York University;
Core Faculty Member, The Graduate Institute
www.howardbloom.net
www.bigbangtango.net
Founder: International Paleopsychology Project; founding board member: Epic
of Evolution Society; founding board member, The Darwin Project; founder: The
Big Bang Tango Media Lab; member: New York Academy of Sciences, American
Association for the Advancement of Science, American Psychological Society,
Academy of Political Science, Human Behavior and Evolution Society, International
Society for Human Ethology; advisory board member: Institute for
Accelerating Change ; executive editor -- New Paradigm book series.
For information on The International Paleopsychology Project, see:
www.paleopsych.org
for two chapters from
The Lucifer Principle: A Scientific Expedition Into the Forces of History,
see www.howardbloom.net/lucifer
For information on Global Brain: The Evolution of Mass Mind from the Big
Bang to the 21st Century, see www.howardbloom.net
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://lists.extropy.org/pipermail/paleopsych/attachments/20051123/1fc636d5/attachment.html>
-------------- next part --------------
A non-text attachment was scrubbed...
Name: not available
Type: image/gif
Size: 73 bytes
Desc: not available
URL: <http://lists.extropy.org/pipermail/paleopsych/attachments/20051123/1fc636d5/attachment.gif>
More information about the paleopsych
mailing list