[extropy-chat] here's how complicated it is

Lee Corbin lcorbin at rawbw.com
Sun Nov 5 18:56:47 UTC 2006


Mike writes

> On 11/5/06, Lee Corbin <lcorbin at rawbw.com> wrote:

> > Here is my solution:  segregation.  Segregation today,
> > segregation tomorrow, and segregation forever.
> > Right now in California, everyone needs segregating:
> > because the white kids can't keep up with the Asians, 
> > and many of them conclude that math, English, and
> > science are for smart kids, not them. As the whites can't
> > keep up with the Asians, the Hispanics can't keep up
> > with the whites, and the blacks can't keep up with the 
> > hispanics, so we ought to go back to... yes, segregation.
> 
> Why does it have to be racist and sexist?  Why can't we
> 'segregate' (to use your negatively overloaded term) along
> dimension of performance capability?

Oh, I agree.  I was being a bit flippant, but as Robert has
just said, there is a point at least insofar as gender is concerned.
As for racial segregation, it really isn't practical anymore. For
one thing, it would just be politically (and probably socially)
impossible.  For another, unlike the case of sex (gender), there
are a lot of people who are intermediary between races. And
you know what problems that would create!

> There ARE white kids who are smarter than the "average"
> asian, so why hold them to a lower standard due to genetics?

Of course.  But the point is that kids in schools can tend to
identify their capabilities in terms of everyone around them.
Not all kids to be sure.  The extremely capable will be fine
no matter what.

> Unless you are suggesting that someone's ethnic background
> or gender defines their potential.... but you wouldn't be saying
> that, right?

Correct.  It is simply a fact that a person's race is overwhelmed
and dwarfed by his or her individual capabilities. I gave a talk
on transfinite numbers recently to a few extremely gifted 8th
graders.  As it was finishing up, a parent asked, "Why is it that
when my son was in elementary school the kids who were good
at math were mostly girls, and now they're mostly boys?"

I had to craft my answer carefully because there was a very
bright 8th grade girl there who had kept up with the boys in
the seminar just fine.  But I also had to tell the truth.  So I
began by making exactly this statement about individuals, and
how generalities do not apply to individuals, but are statistical
in nature.  I mentioned the extremely competant physicist
Lisa Randall at Harvard.  Then I told the rest of the truth:
following puberty, boys leap ahead of girls in the higher reaches
of performance, and I speculated upon evolutionary reasons
for why this is so.

The girl didn't seem to care or notice. She is so bright and
confident that her inner soul told her that whatever I was
saying didn't apply to her.

Lee





More information about the extropy-chat mailing list